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Abstract:

The paper presents a set of three-dimensional (3D) and 2D strength failure conditions for

unidirectional (UD) laminae made from fibre-reinforced plastics (FRP). The conditions are based

on a concept termed the Failure Mode Concept (FMC) which provides failure conditions formulated

on UD lamina level that allows for a prediction of the critical lamina failure mode, and finally of

laminate failure. Following the FMC there are five independent conditions: for Inter Fibre Failure

(IFF) three and for fibre failure (FF) two conditions. These are based on averaged lamina stresses.

The IFF conditions were basically developed in 1996 and later contributed [1, 2] to a ‘World-Wide

Failure Exercise (WWFE) on failure theories’, Ref [3].

In this paper a single but effective modification of one IFF condition is highlighted. It consists in

the replacement of the ‘shear mode IFF 2’ by a numerically advantageous simplified formulation

for the 3D and for the 2D case. A very satisfying verification of the 3D IFF2 condition , reduced to

2D, as well as for a directly formulated 2D IFF2 condition has been achieved when judging them

versus the 2D experiments provided by the WWFE and other sources.

As design verification demands for an accurate determination of the reserve factor its determination

is presented for both the linear and the non-linear case. Values are given for one example.

1. Introduction

Design verification requires "No relevant limit state of a failure mode is exceeded in any

dimensioning load case”. In order to faster meet this requirement industry seeks to replace the

expensive 'Make and Test' design method by verified and benchmarked predictive tools that

engineers may use with confidence. Practical composite failure conditions for UD laminae are

amongst these design tools.

Designers tend to carry out refined stress analyses, but then, they are forced to assess multi-axial

stress states with failure conditions that may have shortcomings or are not verified by a sufficient

amount of experimental data. This data is based on specimens that represent so-called isolated UD

laminae. In this paper, as failure conditions 3D and 2D-UD IFF conditions are investigated.

Emphasis is put on the shear failure mode IFF2 the former formulation of which numerically is not
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practical enough. As failure conditions for a lamina -utilized as building block of a laminate- do not

fully cover the failure behaviour of the embedded laminae, failure theories are to be addressed that

consist, of both, of the failure conditions itself and of non-linear analysis to consider the degrading

lamina’s behaviour within the laminate. Applying this, an accurate input for the computation of the

design assessing reserve factor is provided.

Since 1992 a World-Wide Failure Exercise [4-6] is underway to monitor and check the current

capability of methods for predicting the strength of fibre composite laminates. It was organised at

UMIST and QinetiQ, UK, by Prof. Dr. M. J. Hinton, Mr. P. D. Soden and Dr. A. S. Kaddour. In this

exercise test cases were selected to challenge the theories to the full. These test cases include carbon

and glass fibres, different epoxy matrices, stacking sequences, and loading conditions involving

uni-axial and bi-axial tension and compression, torsion shear, as well as combinations of them. As

test results, those available from tube specimens were chosen because the simpler coupon

specimens are encountered with the free edge effect. Also, a wider range of stress states can be

applied to tubes by combinations of internal or external pressure, torsion, and axial load, see Ref

[6]. Nevertheless some problems remain. The tubes have to be designed in order: to avoid torsion

and compression buckling, to avoid failures at the end constraints, and to minimise possible changes

in geometry (widening, barrelling). The usually given fracture stress states or –in other words-

multi-axial strengths are calculated on basis of un-deformed tube dimensions with no allowance

made for shape change during loading.

When predicting laminate behaviour, which is not the objective of this paper, it is to mention: Test

results from isolated UD lamina specimens such as a tensile coupon are load-controlled. They are

results of weakest link type whereas the in-situ behaviour of an embedded lamina is strain-

controlled and therefore of redundant type [2]. This fact shows up that a good mapping of the

course of ‘isolated UD test data’ does not represent the full information necessary for laminate

analysis.

Generally, and not restricted to the WWFE, there is a lack of real 3D UD tests. Further, data are

even missing in some domains of the provided 2D test cases. Therefore, the 3D UD failure

conditions can only be partly verified but the 2D ones can, sometimes only after re-evaluation of the

test data of the provided test case. Both, the measurement of test results as well as the evaluation of

test results may involve errors, which is to be considered when verifying failure models.

For design engineers the choice of the macro-mechanical level in modelling is mandatory because

they receive as input macro-mechanical stresses from stress analysis. Hence the strength analysis,

delivering the design verification, can be carried out on the same level on the macro-mechanical

level. But one has to keep in mind: Describing failure by macro-mechanical stresses is different to
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describing failure by the really failure mechanisms-causing micro-mechanical stresses and, this is

not always directly possible such as is later delineated for fibre failure under tension (FF1).

In any static design, dependent on the actual design requirements, a designerin general in general

has to dimension a laminate against two types of failure,; namely: initial failure and final

failurewhich is to be dedicated to the laminate. with its loads at fracture level demands for an

analysis beyond IFF.

An IFF mode normally indicates the initial failure or onset of failure in a laminate whereas the

appearance of a FF mode in a single lamina embedded in a laminateusually marks the final failure

of theat laminate. Also fracture critical may be the so-called wedge failure mode IFF3, [7, 2]. In the

case of brittle FRP composites failure coincides with fracture.

At the end of a design campaign the designer has to predict reliable reserve factors. In order to

give a guideline, how to achieve the desired design verification by demonstrating positive Margins

of Safety MS or reserve factors larger than one (fRes = MS + 1), the determination of accurate

reserve factors is depicted. In this context, the designer has to tackle the determination of fRes for

linearly and non-linearly behaving laminae and laminates, and further has to keep in mind: Verified

failure conditions, alone, are just one part to achieve the demanded result ‘reliable reserve factors’.

The two aims of this paper are: 1) the development of a numerically simple set of failure
conditions with showing there is no loss in mapping quality, and 2) the derivation of associated
reserve factors for linear as well non-linear strength analysis. The value of this work lies in the
simplification of the shear mode condition IFF 2 and the presentation of reserve factor formulations
in order to achieve the design verification which is a precondition for product certification.

2 Basics

2.1 Lamina Stresses, Invariants, and Properties

The characterisation of the strength of transversally-isotropic composites requires the

measurement of five independent basic lamina strengths: tR|| and cR|| (tensile and compression

strengths parallel to the fibres); tR and cR (tensile strength and compressive strength transversal

to the fibre direction); and ||R (fibre parallel shear strength transverse/parallel to the fibres). The

measurement of just these 5 strengths is standard.

Fig. 1 depicts the 3D stress state   T
213123321 ),,,,,(   . For completeness and general

understanding it further depicts the 5 strengths in symbolic denotation, applied in the German

guideline VDI 2014 [8] to avoid misunderstanding in the application of material properties (in
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brackets the US denotation), and the 5 elasticity quantities of a UD material element. Fig. 2

demonstrates a 2D stress state of a lamina in a laminate.

2.2 Failure Modes: FF Modes and IFF Modes

From viewing fractography images of UD material it can be concluded what is delineated in Fig.

3:

• The total number of fracture mode14s [1 ,2 ,9, 10] is five: two FF modes and three IFF modes. The

IFF modes incorporate cohesive fracture of the matrix and adhesive fracture of the fibre-matrix

interface. Both fracture types are often termedas ‘matrix failure’.

• Two of the 3 IFF modes, IFF1 and IFF2, may be tolerated if the design requirements allow for.

• Like the fibre failure modes FF1 and FF2 the 'explosive' effect of the so-called wedge fracture

failure IFF3 (which is an IFF mode caused by the transverse stress a 
c-caused IFF) of a lamina

in a laminate, which is an IFF mode caused by high transverse compressive stress 
cdescribed

in, may also directly also directly lead to final failure (as for example in the case of Puck’s

torsion spring [7]) of a laminate via the development of through-thickness stresses and or, via a

following local delamination, and hence tohence, to ‘wedge buckling’ of an adjacent lamina and

therefore to final failure of the laminate. So, the IFF3 mode, where parts of a lamina move in the

thickness direction, may initiate a catastrophic FF, Fig. 4. The grade of criticality is depicted in

Fig. 5. It depends on the lay-up: A tension-loaded outer hoop layer of a pressure vessel

experiences highest criticality, too.

In the context above a further aspect is to be mentioned: The difference between isolated and

embedded lamina behaviour comes from the effect of the occurrence of single micro-cracks in the

isolated case. The critical one of them grows to macro-size and causes fracture, whereas in the

embedded case multi-site micro-cracking is generated. The latter is induced by the strain-control of

the neighbouring layers. Figure 4 also informs about the specific IFF features of isolated and

embedded laminae.

3 The Failure Mode Concept (FMC)

The FMC generates a phenomenological three-dimensional lamina stress-based engineering

approach for the derivation of failure conditions. Table 1 summarizes the main features of the

FMC. The FMC regards mechanics and probabilistics in the interaction zones of the failure modes,

thus finally leading back to a formulation that looks like a so-called ‘single or global failure

surface’.
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Table 2 depicts the system of strength failure domains from ‘onset of yielding’ (if applicable) to

‘onset of fracture’. In addition, the table points out the 5 failure modes: 
||F → FF1, 

||F → FF2, 


F → IFF1, ||F → IFF2, 

F → IFF3. These failure modes shall be reported now in its 3D

formulations but with a newly formulated IFF2. Later, the 2D IFF2 formulation will be derived.

3.1 FMC-based 3D-fracture Failure Conditions

Applying FMC methodology to UD material is tostrictly propose a set of equations describing for

a number offive failure modes in eachtheindividual lamina (ply) and then to combine these

equations in a suitable manner to predict failure in a lamina in order to consider the superposition of

all modes, see Ref[1]).

Each failure mode is described by a distinct failure function F
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11I  , 322I   , 2
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2
324 4I   )( (1f-1j)
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2
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31325 4I   ))(( .

They were derived by Boehler [11]. 5I considers the physical difference of )( 221  to )( 231  .

If the stresses, inserted into the failure functions F, are fracture stresses this leads to fracture

conditions when setting F=100% or mode-wise 1)R,(F emod
i

emod  , respectively. The FE output

stresses are to be inserted as input values in these equations when computing the reserve factors.

Remind: The 2nd term in 5I ( 2131234  ) was deleted because on one side this combination is very

seldom of importance, and on the other side can be made zero if a transformation in the quasi-

isotropic plane is accomplished via ),,,,,( 213123321  → ),,0,,,( *
21

*
31

*
3

*
21  .

In the equations above, R denotes a mean or typical strength value that is to be used in stress/

deformation analysis. Later a letter R will be applied. It is either a general value or the so-called

design allowable which is a statistically-based minimum value to be used in strength analysis.
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Besides the design-mandatory 5 strengths the Eqs(1) hasve been derived with contain two free

curve parameters ),( ||

 bb that are to beto be determined from multi-axial test data in the

associated ‘pure domain of validity’ of the respected mode or can be estimated by experience. R

marks mean strength value Simplified, one fibre calibration point □ for each of the two modes

delivers, after inserting its coordinates into the IFF conditions: for ||F from a point  ||
212 , 

c
(see

[1, 2]) and for 
F from (   c

3
c
2 , ), and after a resolving the two equations (2)
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The author’s experience with test data leads to the conclusion: Safe bBoundson the safe side for

typical epoxy containing GFRP, CFRP and AFRP arewere assumed to be

1.1b0.1and2.0b05.0 ||  
 . A value 0b || means there is 'no bulge effect' or increase

of shear resistance in compression domain, see Fig.6. A value 
b = 1 means 'no material friction' is

existing in the quasi-isotropic -plane (not active in 2D case, see [Cun03]). As calibration points

for 
b are still missing (brittle isotropic materials however give some good information),: A 

b = 1

during apre-dimensioning. is recommended as it provides a safe lower bound.to behaviour of many

unidirectional laminae will keep the engineer in the compression domain on the safe side. It

furthermore will simplify the failure function By setting 0bb ||  
 the FMC-based equations are

simplified ‘down’ to the level of the Tsai/Wu model [12]a good approach.

The FF1 cannot be described by a homogenized (smeared) macroscopical stress value 1 . So, the

engineering-like macroscopical modelling has to be replaced by a correct microscopical one,

however, shall be ‘approximately’ formulated in macroscopical quantities. This is the FEA-

computed macro-mechanical strain 1 . Remind from [2] IFF1: 
||F : I1 = 1

f1fv  ||1f11f EEv   with f1 = tensile fibre stress which is responsible for

fracture. No fibre properties are required.

With regard respect to the 3D nature characterof the lamina IFF conditions, both, aboveIFF1

( 
F := transverse tensile failure, cracking due to inter-laminar stresses 3132

t
3  ,, ) and IFF3 ( 

F :=

wedge failure, the intra-laminar stresses 21
c
2  , may cause cracking and a local 3D stress state

including 3 ) also serve ):,:( failuretensileltransversaFfailurewedgeF 
 as criteria for the

‘onset of delami-nation’ which is a laminate failure type.
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Note: F = 1 is termed failure condition. It mathematically describes the limit state or fracture
surface. F >=< 1 is termed failure criterion.

3.2 Mode Reserve Factors

Determination of Mode Reserve Factors

Employing the mode’s strength eR mod and its equivalent stress e
eq
mod for linear analyses,

according to the general equation e
eq

ee
s Rf modmod)(mod

Re / , the following set of formulae for the

reserve factor of each mode can be provided [2]
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In case of e.g. tensile stresses, due to an automatic insertion taken later for reasons of having one

single equation instead of dealing with several equations, the reserve factors for FF2 and IFF3 will

become negative. This means there is no stressing of the material. In a later section will be reported

how this problem is numerically treated.

An equivalent stress eq (always positive such like the strengths) includes all actual load stresses

and residual stresses that are acting together in a given mode equation.

Simplification of the 3D IFF2 formulation

In the WWFE, the single numerical problem (probably no intersection is achieved of mode curve

IFF3 with curve IFF2, Fig. 7) of the 3D conditions was bypassed by a query, that requires

2121 max  . The determination of the bound value 21max is performed in Appendix B of Ref [2]

This problem can be tackled when leaving the usual principle of proportional stressing (all stresses

of the actually given stress state are equally factored), which interprets the mode reserve factors as

mode stretch factors of the actual stress vector. Stretching ends when the associated mode failure

curve is met. Figure 7 visualises this procedure.

A violation of this principle should be permitted if ‘mapping of the interaction of failure modes’ is

addressed. Now, instead of factoring the full stress state in Eq.3e that means factoring each stress,
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just the mode driving shear stresses and not the transversal normal stresses are factored.

Unfortunately this equation includes factors wit power 4 and 3, which has no solution. Therefore,

the approach is modified to having factors with the powers 4 and 2
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The root of Eq. (4) delivers for the 3D stress state (a negative root makes no sense)
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and for the 2D stress state ( |||| bbb   )
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This procedure takes the former non-intersection problem completely away. Probable slight

differences in mapping, when applying this numerically advantageous simplification may be

balanced by the ‘choice’ of the parameter ||bb and a little by m . Mapping is executed equally well.

3.4 Interaction of Failure Modes or Determination of Resultant Reserve Factors

Mechanical and probabilistic interactions cannot be clearly distinguished and therefore, Cuntze

models the failure mode interactions by a simple probabilistically based ‘series spring model’

approach [1, 2 for describing the combined effect of this system of failures]. Such a model describes

the lamina failure system as a series failure system. A series system is in a state of failure whenever

any of its elements fails. Each mode is one element of the failure system and is seen to be

independent of the other.

By this method, the interaction between FF and IFF modes as well as between the various IFF modes

acts as a rounding-off procedure linked to the determination of the desired values for the most often

permitted (if linear analysis is sufficient) stress-based resultant reserve factor sfRe . In these mixed

failure domains the desired sfRe (super-script res)automatically takes into the account of the

interactions between all the affected of all modes in utilizing the formula

mesmod
sRe

m
sRe )f()f/1(

  .............. for linear analysis (7a)

= m||
sRe

m
sRe )f/1()f/1(

   m
sRe )f/1(


m

s
m

s ff  )/1()/1( ||
Re

||
Re

  ,

or fully equivalent in case of linear analysis, then Efff/1 sRe  ,

mesmodm )Eff()Eff(
  .............. for linear and non-linear analysis (7b)



Paper 2DcriteriaUD 2003 9 of 29 10.12.2008, 09:39

 m||m|| )Eff()Eff(
  mm||m )Eff()Eff()Eff(

    ,

as the resultant Effort (interaction of failure modes), in which ith m isas the mode interaction

coefficient. It is also termed rounding-off exponent, the size of which is high in case of low scatter

and vice versa. As a simplifying practical simplifying assumption, m is given here the takensame

value, regardless of mode for eachinteraction zone! The value of m is obtained by curve fittinghas

to be set by fittingThis experience is gained from that and by respecting the fact -still given above-

that. The author’s experience suggests that , but 1.3m  is often appropriate, the more, if a lamina is

embedded in a laminategives a good approximationis a good approach.

In practice, at maximum 3 modes of the possible 5 ones will physically interact. However, all

modes are included in Eqs.(7) in order to always have the full set of equations in one equation

during the numerical analysis. If an )(mod
Re

e
sf becomes negative, caused by the numerically

advantageous, sign-considering automatic insertion of the FEA stress output

  T),,,,,( 121323321   into all 5 failure conditions, a value of 100 shall replace a negative

)(mod
Re

e
sf , and a zero shall replace its equivalent stress value. A query serves to exclude such a

negative or zero value. For the specific 2D failure conditions in the section 4 the queries can be

avoided by the application of absolute values in the associated failure equation, see FF1 and FF2 in

the MATHCAD program attached as Annex. Of course, one can also take the full set of possible

mode combinations and choose the applicable ones after sorting out those which do not make sense.

If eg inserting a unidirectional fracture stress (i.e.this is the strength value tR ) is inserted into the

equation above, then a point on a 2D-failure curve or on the3D-failure surface, described by 1F 

or 1f sRe  or EFF =1, is achieved, the strength point. A failure surface is the result of an optimally

mapping of the course of test data and, therefore, is characterized by a 50% survival probability.

Rounding-off, by employing Eq(7), in mode interaction zones of adjacent mode failure curves

(2D) and partial failure surfaces (3D) is leading again to a global failure curve and surface, or –in

other words-, to a ‘single surface failure description‘ such as with Tsai/Wu [12], however, without

the well-known shortcomings.

4 2D-Failure Conditions with Determination of Failure Curves

4.1 Derivation of the 2D ||F approach
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Focussing a 2D state of stress   T
2121 000 ),,,,,(   the failure conditions become simpler

than those dedicated to the 3D case, but, all failure conditions and strengths remain active: The 3D

IFF2 condition of the WWFE (Eq.1d), reduced to 2D, leads to the associated mode reserve factor

3/12
212

3
21||

|| ]b2[/Rf
||

 



. (8)

Of course, even for this simpler formulation the problem needing a query in the code [2] still exists.

Therefore, in the 2D case approach Cuntze circumvents this shortcoming by replacing the invariant-

based formulation by the simplest formulation possible, the linear formulation [13]

)BR(
F
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||










. (9a)

This approach fully corresponds to the Mohr–Coulomb formulation nn R    with Mohr’s

fracture stresses nn  , acting on the section plane and  the UD Material’s internal friction

coefficient, see Ref.[14].

From this, applying the principle of proportional stressing for all stresses applied follows

1
)fBR(

f

2||||||

21||













(10a)

or resolved for the mode reserve factor

]B[/Rf 221||
||

||



 


. (10b)

But this formulation contains a drawback because this 21 -driven condition in contrast to Eq.8 still

exists if 021 and 02 . This problem is bypassed in the same way as in the case the 3D IFF2

condition, by factoring in Eq.9 just the driving stress 21 , thus yielding ( |||| bb2B   or ||b2  )

212||||
|| /)BR(f  


(11a)

or the stress effort which is to be utilized in non-linear analysis

)BR/(Eff 2||||21
||   


. (11b)

Just one curve parameter, the internal friction characterizing parameter ||B , has to be determined in

the 2D case.

4.2 Yield condition and Fracture Conditions

Yield Condition
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According to the FMC for the transversally-isotropic material, similarly to isotropic materials, just

terms describing the shape change of the UD material cube can contribute to a failure function.

Based on this, for the failure mechanism yielding, the proposed approach yields the yield condition

2
y2c

2.0p

2
21

2
2.0p||

2
y a

)R()R(
F 




(12)

(preliminary formulation in WWFW [2]) with the size parameter ya and the two yield strengths

20pR .|| , c
20pR . , at a permanent plastic strain of 0.2% dedicated to the two non-linear stress-strain

curves )( 2121  and )( 2
c
2  . Its regime is growing from the yield initiation value 1 due to  ya1

IFF value. The yield failure curve is of importance e.g. for indicating damage begin and for

creeping in case of not well-designed laminates.

Above condition involves two yield strength values what seems to be in contradiction to the FMC.

But, these values are highly correlated due to the matrix material the yield strength value of which

is the governing quantity. Figure 20 in Ref. [2] visualizes how the ( )( 221  initiation yield or onset

of yielding curve lies within the IFF envelope. This so-called single (global) yield surface is

confined by the five partial fracture surfaces formulated below.

Fracture Conditions

After substitution of the former ||F the full set of 2D failure conditions reads

Part B , set ,1
R

:F...2FF,1
R

E
:F...1FF

c
||

1
||t

||

||1

|| 



 



IFF 1… 1
R

:F
t
2 




 , IFF 2… 1
BR

:F
||||

21

|| 
 





, (13a-e)

IFF 3… 1
R

F
c
2 








,

with stresses being fracture stresses. The remaining curve parameter ||B is determined by curve fit

simulation. Its value is, due to the linear formulation, much higher than the value of ||b , [2]. In

section 4.5 distinct ||B values are given for the test data curves which have been mapped by the

Eqs(13).

4.3 Establishment of 2D Failure Surfaces and Failure Curves

Under the assumption “No residual stresses are acting” the associated three interesting failure

surfaces are presented:
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IFF Envelope or Fracture Curve τ21(σ2)

According to the Eqs(7, 11a), the formulation of the IFF fracture envelope -zero fibre stress- reads

1
R)BRR

)f/1(

m

c
2

m

2||||

21

m

t
2mIFF

sRe 






 
































 



 . (14a)

The afore-mentioned smart formulation of Mr. Freund, utilized in the attached code, avoids the

queries. It reads

1
R2)BRR2

)f/1(

m

c

22

m

2||||

21

m

t

22mIFF
sRe 











 





























 






 




. (14b)

The conditions in the 3D case, Eqs(3), are formally the same.

IFF Failure Surface or Failure Body ),,( 2121 

For bi-axial stress states   T
2121 000 ),,,,,(   the formulation of the global IFF fracture

envelope, including FF-IFF interaction, reads

m
sRe )f/1(  (15a)

1)
R2

()
BR

()
R2

()
R2

()
R2

E)(
( m

c

22m

2||||

21m

t

22m

c
||

11m

t
||

||11


























With Eq(15a) the complete failure surface or body can be computed. It is visualized in Fig.8. Of

course, Eq(15a) can deal with stresses from a non-linear analysis which considers the non-linear

strain-hardening.

FF Failure Surface = Final Failure

The formulation of the final failure curve takes into account. hardening, softening and geometrical

non-linearity. It reads

1)
R2

()
R2

()
R2

E)(
()f/1( m

c

22m

c
||

11m

t
||

||11mfinal
sRe 












 
. (15b)

Figure 7 further depicted the domains where FF and IFF are practically not interacting. In these

domains IFF and FF can be treated decoupled and the separate utilization of an IFF condition is

permitted. In the FF domains fibre stresses govern whereas in the IFF domains the stresses 2 and

21 dominate.

4.4 Verification of Conditions by Lamina and Laminate Test Cases



Paper 2DcriteriaUD 2003 13 of 29 10.12.2008, 09:39

Main cross-section of the 2D stress state’s failure body is the plane )(( 221  . The Figures 9 and

10 outline the mapping capabilities of the 3D and the 2D conditions. In this specific test case,

provided by WWFE the course of test data is also mapped with a very good result. (Mind: the

author assumes the very high 21 value on the bulge, point ?, is not correctly measured or evaluated,

respectively). All material parameters utilized for mapping are included in the captures as well as

the different curve parameters for reasons to compare with the 2D-reduced 3D conditions. For the

2D and 3D formulations equal parameters practically deliver identical curves. The two remaining

sections or failure envelopes are the planes )( 121  and )( 12  are not affected by the change in

IFF2. Visualisations are found in WWFE [1, 2].

A confirmation of the 2D conditions by laminate test cases shall not be performed in the frame of

the paper at hand. However, as the 2D conditions map 2D test cases the same as the 3D conditions

Eq(3) do, one can transfer the conclusion from WWFE: The correlation between the author’s

predictions and the experimental data (just 2D data was delivered) are generally satisfactory for the

laminates, especially where Fibre Failure (FF) is the dominant mode, which is the case for -due to

netting theory- well-designed laminates.

5 Determination of Reserve Factor and Margin of Safety

5.1 Design Aspects

According to the normally applied safety concept ‘Loads are increased by a factor of safety’

(denoted FOS j) the reserve factors, which have to be determined for the Design Verification of the

laminate, are also load-related defined. To achieve the verification of the design the designer must

know: Is the actual load case, which might involve several strength and other failure modes, failure

critical or not? Generally, there are two failure load limit states to be regarded, the initial failure load

and the final failure load. For instance, leak failure belongs to another failure mode and cannot be

predicted by the Eq(14. Initial failure more or less corresponds to IFF and final failure to fibre

failure regarding ‘wedge failure’.

Initial failure stresses are important where a standard requires a Design Verification with respect

to IFF. This means: At Design Limit Load level (DLL) no IFF is permitted. Such applications may

be fatiguing of structures, or rotors which require a low out-of-balance.

For the Design Verification at the higher ultimate load level (DUL=jult·DLL) the accuracy of the

initial failure prediction as an intermediate step has not that much impact because IFF influence

reduces with increasing degradation. Beyond IFF, often termed post failure regime, the failure body

is laterally shrinking and the non-linear behaviour leads to a load-redistribution, which means to a
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reduction of IFF stresses on cost of higher fibre stresses. This is correlated with vanishing residual

stresses. The points 1 and 2 in Fig. 11 highlight the degradation-dependent laterally shrinking of the ‘2D

failure body’ when coming beyond the IFF level.

As the two design verification types initial and final failure shall not occur a minimum reserve

factor 1 is required. This is performed in respecting the formulae:

• for the initial failure, indicated by the so-called knee in the laminate's stress-strain curve and

originated by ||,  FF  , ( 
F ) ,Re

DLLj

loadfailureinitial
f

init

initial
s


 (16a)

• for the final failure, indicated by 
|||| , FF and 

F
DLLj

loadfailurefinal
f

ult

final
s


Re (16b)

with jinit , jult : = design factors of safety. It is assumed jinit  jp0.2. Values for the FoS are,

e.g. in aerospace, jp0.2=1.1 and jult =1.25. Due to the redundancy in a laminate it is

recommended to set 0.1jinitial  .

Design factors of safety for spacecrafts are found in the ECSS Standards of ESA/ESTEC, e.g. for

high pressurized structures and vessels in [15].

If laminates are well-designed (netting theory applied, fibre-dominated) straining up to final

failure is pretty linear. Due to this fact, stresses and loads are relatively linearly related. Not well-

designed laminates always require a high non-linear effort to compute accurate stresses, strains, and

deformations.

Strength design allowables (Fig. 12) are smaller than the mean strengths also termed typical

strengths, iR < iR . Therefore, the effective stress-strain non-linearity - when computing the initial

failure load- is not so high, see subsection 5.3. Further workload-reducing, that means the

application of linear analysis is good enough, act the FoS j which are applied when designing. The

higher the FOS, the more the assumption of a simple linear structural analysis is justified to

compute the stresses and strains in the critical lamina.

Of further importance is the very commonly applied ‘design strain of %35.0 ’, required as a

damage tolerance considering value at Design Limit Load level. Applying this design strain, linear

analysis is practically sufficient. This value also covers the design case initial failure.

When performing design work one should keep in mind for the sake of simplifying the analysis as

far as possible: Design a laminate to be stable as a truss (netting theory applicable) and stack the

laminae at angles to generate a laminate robust against possible load changes. This will lead to a

well-designed laminate and to the freedom to model the laminate behaviour by linear analysis.
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In the following sub-sections, the way is presented how mode reserve factors e
sf mod

Re and global

reserve factor sfRe have to be determined. It is demonstrated for the 2D conditions, only.

5.2 Stress-based Reserve Factor (linear structural analysis acceptable,    )DLL(jL   )

The reserve factor fRes is defined here that factor all mechanical load-induced stresses applied

have to be multiplied with to generate failure. Geometrically it means that the stress vector {}L has

to be stretched in its direction by this factor till the failure surface, Figure 7. This procedure is called

‘principle of proportional stressing’ and is valid as far as linear modelling can be applied. If high

design factors of safety (FoS) are required and if there are no residual stresses, then linear elastic

modelling is almost always permissible and just a stress-based fRes needs to be predicted.

Initial (IFF) Proof of Design: Initial failure load  Design Limit Load (j =1)

 Case "No residual stresses", Figure 12:  L contains mechanical load stresses, only

In general case of a global failure condition –such as with Tsai/Wu- the insertion of

{}failure = fRes {}L  {}L + MS . {}L proportional stressing (17)

into the failure conditions will deliver a polynomial equation for fRes the explicit solubility of

which might be possible or not. Applying the FMC, the solution procedure becomes simpler

because just mode reserve factors have to be determined and the desired resultant (or global)

reserve factor as a function of the mode reserve factors is computable.

Inserting    L
e

s

e

failure f   mod
Re

mod
(18a)

into the Eqs(13) or, in other words, multiplying each stress in the Eqs(13) by the associated

emod
sRef , each 2D emod

sRef can be extracted

)E)/(/Rf ||11
t

||
||   , )/(R2f 11

c
||

||   , Part B set

(19a-e)

)/(R2f 22
t   

 , 212||||
|| /)BR(f  

 , )/(R2f 22
c   

 ,

The minimum value outlines which mode reserve factor is the design driving one.

Afterward, in order to compute IFF
sRef , the mode reserve factors are inserted into the Eqs(20)

mm||mm||m||mIFF
sRe )f/j()f/j()f/j()f/j()f/j()f/1(     . (20)

Case "With residual stresses", Fig. 13
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Inserting into the Eqs(13)   e

failure

mod
 = e

sf mod
Re {}L + {}R , (18b)

with the residual stress vector {}R from curing, yields an equation for each stress-based e
sf mod

Re

)E/()R(f ||1R1
t

||
||  

, 1R1
c

||
|| /)R(f   , Part B set

(21a-e)

2R2
t /)R(f   


, 212||R21||

|| /)BR(f   


, 2R2
c /)R(f   



Once more, these equations have to be inserted into the Eqs(20). This procedure is permitted as

long as the stresses have not caused an essential amount of damage that would lead to stress-

redistribution and to a reduction of the size of the residual stresses. For the sake of a simple

formulation the ‘smart type’ has not been chosen.

Final (FF) Proof of Design: Final failure load‘ > Design Ultimate Load (j=jult)

The determination of the final failure load, necessary for the Ultimate Design Verification,

utilizes the

Eqs(15). Because probable remaining marginal residual stresses at failure have no load-carrying

effect anymore there is just the case ‘No residual stresses’ to be treated. The remaining mode

reserve factors read

,/R)E)/((R2f ||
eq

t
||||11

t
||

||      ||
eq

c
||11

c
||

|| /R)//R2f  , (21)

However, if wedge failure is essential Eq.20 has to be replaced with Eq.22

mm||m||mfinal
sRe )f/j()f/j()f/j()f/1(    . (22)

5.3 Load-based Reserve Factor (non-linear structural analysis applied ,    )DLLj(L   )

Beyond IFF the essential features in the associated non-linear analysis are:

* Loading is re-distributed versus fibres,
* Load path is altering in contrast to the linear case, and
* Large strains and deformations may occur.

Accurate reserve factors have to be referred to loads, which means, according to their original

definition. Instead of the stress formulation

)DLL(j

"strength"allowabledesign
f sRe


 =

)DLL(j

R


(23a)

of the linear case (strength R= stress resistance), in the non-linear case, the load formulation

DLLj

"cetanresisload"allowabledesign
f sRe 

 (23b)



Paper 2DcriteriaUD 2003 17 of 29 10.12.2008, 09:39

has to be applied. Maximum load that can be achieved in the analysis’ load increase is the load

resistance. Its value is determined by a strength bound. This is performed by computing the modal

equivalent stresses and the modal stress efforts (Eff = Req / ) and by checking the remaining global

stress effort reserve indicated by a value 1 , Fig. 14. In the associated material-non-linear analysis

the material’s so-called IFF stress effort is kept constant when incrementally determining the

changing stress state due to load redistribution versus the fibres.

No residual stresses are considered in the equations depicted in section5.3.

Initial (IFF) Design Verification: Initial failure load  Design Limit Load

Non-linear analysis considers hardening from non-linear stress-strain curves of the UD material,

such as )( 2121  . Due to this material non-linearity, in spite of a proportional loading, IFF-related

stresses increase less than proportional, Fig. 15. Proportional loading does not generate proportional

stressing.

The afore-mentioned strength check during the incremental load increase provides the bound the

computation may run up. The achieved load is the searched ‘Initial failure load‘. It is reached at that

load when the stress effort becomes, see Eq.7b,

 m||m||mIFF )Eff()Eff()Eff(
 

1)Eff()Eff()Eff( mm||m     . (24)

Final (FF) Design Verification: Final failure load‘  Design Ultimate Load

Now, material non-linear analysis has to consider hardening and softening (from intensive

degradation of the embedded lamina; see Figure 3 in [2]). As practical limitation the load increase

in the computation comes to its maximum value if the fibre strength ||fR is reached in a single FF

mode or in combination with the wedge mode IFF3, which means if

  mm||m||m )Eff()Eff()Eff()Eff(
 

1. (25)

The achieved load is the searched ‘final failure load‘. If numeric stops computation before reaching

Eff = 1 , then, it is also assumed that the final failure load is achieved. The successively computed

Eff value is just a checking number not an accurate number as it will be the case for Eff at 100%.

5.4 Numerical Example for Design Verification

In this section a proposal for a design verification procedure is applied to a simple example: a bi-

axial stress state in a point of a distinct lamina of a laminate. Input is:

* Load in the single dimensioning load case: DLL (Design Limit Load = maximum expected load)
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* Critical stress state:   TT
212||1L )36,74,525(),,E(   at DLL level

* IFF design curve: 1)R,R,R,,(F ||
ct

212  , 1.3m,6.0B ||  

* Strength design allowables :   T
||

ctc
||

t
|| )54,128,27,725,1050()R,R,R,R,R(R   .

I Stress- based Resultant Reserve Factor Assumption: stress ~ load

For laminates, well-designed by netting theory (fibre net controls the strain behaviour) linear

analysis is a good approximation on the safe side. In this case, the computation of the reserve

factors is performed as follows:

0.2525/1050)E/(Rf ||1
t

||
||  

0/725)/(R2f 11
c

||
||   ,

0/27)/(R2f 22
t  

  ,

,7.2/))(B5.0R(f 2122||||
||  

 

7.174/128)/(R2f 22
c  

  ↔ design-driving mode = delamination-critical.

- Initial (IFF) Design Verification: j = 1.0 !

Initial resultant reserve factor
mm||mm||m||mIFF

sRe )f/j()f/j()f/j()f/j()f/j()f/1(    

mmmmm )7.1/j()7.2/j()0()0()0.2/j(  

→ 141.1f IFF
sRe  , 171.0f/1Eff IFF

sRe
IFF  .

The design is accepted!

Stress results from non-linear analysis regarding hardening can be assessed in the same way.

- Final (FF) Design Verification: j = jult = 1.25

Final resultant reserve factor and final stress effort
mm||mm||m||mfinal

sRe )f/j()f/j()f/j()f/j()f/j()f/1(    

→ 114.1f final
sRe  or

m||mm||m||m )Effj(Effj()Effj()Effj()Effj()Eff(
   

→  1f/188.0Eff final
sRe  .

The design is accepted!

II Load-based Resultant Reserve Factor Assumption ‘No residual stresses’ -

Initial (IFF) Design Verification: j = 1.0 See stress-based case ! -

Final (FF) Design Verification: j = jult= 1.25 (chosen). Efff/1 sRe  if non-linear
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This case has to consider hardening, softening and geometrically non-linear effects. The

equivalent stresses  
eq and ||

eq
 degrade versus zero and  

eq is considered hazardous in this

application.

In parallel to the incremental loading, the stress effort has to be checked, Fig. 16. Highest load

level reached in the computation was 1.51·DLL. After insertion of the associated lamina stresses

calculated in the non-linear stress analysis (data assumed for this schematic procedure) the

computed stress effort

mm||m||m )Eff()Eff()Eff()Eff(
   →  195.0Eff 

was 95% <100% at reaching the highest computation level. Therefore, the final reserve factor

21.1
DLL25.1

DLL51.1
f final

sRe 



 114.1 

is larger than 1. The design is accepted!

Note:
- The computed load capacity is higher than in the stress-based case.
- Probable residual stresses would have been vanished due to degradation.

6 Conclusions

The two objectives of this article are the development of numerically simple 3D/2D IFF conditions

for UD laminae and the derivation of condition-associated reliable reserve factors necessary for the

design verification. For both objectives the lessons learned are enlisted in the following:

* Mapping (fitting) of the courses of provided and own IFF test data by the new and simpler ||F

conditions is very good. In this context, with respect to accuracy we should keep in mind: There is a

more or less large scatter in experiment, and we apply failure models to map the evaluated test data.

As failure modelling is one subset of structural modelling one should not look for peanuts in failure

modelling.

* Smeared modelling of a UD material which consists of fibres and matrix comes to its limit in the

mode 
||F . Here, failure occurs when the fibre strength ||fR is reached

* The full capacity of the fracture conditions could not be verified. There is still a need for

generating reliable 2D test data not just for 3D data.

* The softening part of the stress-strain curve of an embedded (constraint) lamina is strain-

controlled by the laminate [2]. As this ‘in-situ behaviour’ has not attracted much attention further

work is highly recommended in order to achieve fully reliable reserve factor values.

* The determination of the lowest mode reserve factor as the design driving one is automatically

given. The computation of the resultant reserve factor fRes is integral part of the FMC procedure.

* Formulae for the determination of reserve factors in linear and non-linear cases are highlighted.
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* In non-linear case the load has to be increased until its theoretical final failure is reached. This

level is indicated by a stress effort %100Eff  for the critical lamina in an analysis-accompanying

check. The benefit of non-linear analysis on the reserve factor is outlined

* In non-linear analysis three effects have to be considered:

- non-linear stress-strain behaviour of the smeared lamina material (hardening, below IFF),

- beyond IFF, from degradation caused softening, and

- non-linear geometrical behaviour including large strains and large deformations (had to be

considered when applying some test cases of the WWFE which were not correctly evaluated)

* The mean curve is to be utilised in stress and deformation analysis

* For initial failure the application of linear analysis is sufficient in practice. In case of well-

designed laminates, very often, linear analysis is sufficient even for final failure.

NOTE

Experiments and theory have a hand-in-hand relationship. Just well-understood experiments can

verify the models. And, one has to keep in mind when considering the remaining gaps between

theory and experiment: - Theory creates a model of the reality, ‘only’

- An experiment is ‘just’ one realisation of the reality and experimental results can be far away

from the reality like a bad theoretical model.
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ANNEX: MATHCAD programme used for mapping the courses of test data

The code was developed initially by A. Freund.

Input for the programme is the stress state   T
2121 000 ),,,,,(   .

Material parameters were taken from [13]: 34.0bbsp  , 1b 
 (not active), and see the input below

250 200 150 100 50 0 50 100

25

50

75

100

125

150

TAU 21
k

CFK i 1

SIG2
k

CFK i 0

250 200 150 100 50 0 50 100

25

50

75

100

125

150

TAU 21
k

CFK i 1

SIG2
k

CFK i 0

visualisation:

SIG2k
Lamina

k 2
TAU21k

Lamina
k 3



stop 10000loadstep .5inkr 1schluss 90start 90k 0
schluss start

inkr
loop:

CFK
i 1

CFK
i 0

Test data points:i 0 70test data set:

m° 2.2Bsp 0.34in MPaRsp 97Rsc 231Rst 55Rpc 800Rpt 1280
material
parameters:

(Suffixes mean: p:=parallel || , s:= transversal or perpendicular )

Result: The graphs are practically identical for both ||F formulations.

The columns in the following MATHCAD programme represent the computation loops.

3D IFF2, Eq(4)2D IFF2, Eq(13d)

x > 0
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Lamina i 0

l 0

end 0

ende stop 1

l end

 1 l loadstep cos x Grad( ) SIG1

 2 l loadstep cos x Grad( ) SIG2

 21 l loadstep sin x Grad( ) TAU21

eq p  1  1  0.5

eq p  1  1  0.5

eq s  2  2  0.5

eq s  2  2  0.5

a  21
4

R sp
4



b 2  2  21
2





 R sp

3


eq sp 0  21 0.01if

R sp 2 a( ) Bsp b Bsp
2

b
2

 4 a






0.5

 otherwise



EffIFF
eq s

R st









m°
eq sp

R sp









m°


eq s

R sc









m°











1

m°



Efffinal
eq p

R pt









m°
eq p

R pc









m°


eq s

R sc









m°











1

m°



Effres
eq p

R pt









m°
eq p

R pc









m°


eq s

R st









m°


eq sp

R sp









m°


eq s

R sc









m°



















1

m°



end ende( ) Effres 1if

end end 1

end endewhile

Kurve
i 

x  1  2  21
eq s

R st

eq s

R sc

eq sp

R sp
EffIFF Efffinal Effres









T



i i 1

x start start inkr schlussfor

Kurve( )( )
T



Table of
analysis data:
3D condition

[Puc02]

 31 0

3 0

eqp 1 1  0.5

eqp 1 1  0.5

eqs 2 3  2
2

2 2 3 3
2






 0.5

eqs bbs 1  2 3  bbs 2
2

2 2 3 3
2



a
 31

2
 21

2






Rsp
2











2



b 2 bbsp
2  21

2
 3  31

2






Rsp
3



ba
b

2 a


eqsp 0  21 0.01if

Rsp ba ba
2 1

a










0.5

 otherwise



3D

Lamina

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0 0 51 0 0 0 0 0 1 -0.27 0

10 0 50.23 8.86 0 0 0 0 0.98 -0.26 0.11

20 0 49.8 18.13 0 0 0 0 0.97 -0.26 0.22

30 0 48.5 28 0 0 0 0 0.95 -0.25 0.33

40 0 46.73 39.21 0 0 0 0 0.91 -0.24 0.46

50 0 42.42 50.56 0 0 0 0 0.83 -0.22 0.59

60 0 37 64.09 0 0 0 0 0.72 -0.19 0.74

70 0 28.39 77.99 0 0 0 0 0.55 -0.15 0.87

80 0 15.8 89.62 0 0 0 0 0.31 -0.08 0.96

90 0 -0 98 0 0 0 0 0 0 1

100 0 -18.23 103.4 0 0 0 0 0 -0.08 1

110 0 -40.02 109.94 0 0 0 0 0 -0.17 1

120 0 -67.5 116.91 0 0 0 0 0 -0.29 0.98

130 0 -103.49 123.33 0 0 0 0 0 -0.45 0.94

140 0 -146.31 122.77 0 0 0 0 0 -0.63 0.84

150 0 -187.06 108 0 0 0 0 0 -0.81 0.68

160 0 -214.25 77.98 0 0 0 0 0 -0.93 0.46

170 0 -227.49 40.11 0 0 0 0 0 -0.99 0.23

180 0 -231 -0 0 0 0 0 0 -1 0


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Fig. 1. Stresses, invariants, and strength notations of a UD
lamina element. [VDI 2014 guideline]
t: = tension, c: = compression, f := index fibre.

Fig 2. Laminate and k' th lamina
subjected to a plane state of stress
(mid-plane z = 0).

)(),(),(),(),( ||||||
ccttcctt YRYRSRXRXR   ;

  ,,,, |||||| GEE ;

  T),,,,,( 121323321   .

Fig.3. Fracture modes (types) in
transversally-isotropic material.
NF:= Normal Fracture,
SF:= Shear Fracture. [13]

wedge type
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Fig. 4. IFF features in isolated and embedded laminae (for ||F similar)

Isolated lamina, load-controlled
 weakest link type test results
A single crack is generated at the site
of the most unfavourable defect.

IFF 1 :

IFF 3 :

Fig. 5. Failure mode criticality

Fig. 6. )( 221  course of test

data, hoop wound tubes[13].
E-glass/LY556/HT976.

Embedded lamina, strain-controlled
 redundant type test results
Multiple micro-cracking occurs until

reaching a itical damage state which
contains a few micro-cracks per mm.

Fig. 7. Mean curve 1RF ii ),( derivation with

determination of mode stretch factors in case of

mechanical load-stresses    )DLL(jL   .

Principle of proportional stressing (old) and new

approach for ||F .

  T)62,135,34,570,1140(R  .

final failure IFF

Initial failure

|||||| F,F,F,F,F 








wedge
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Fig. 8. The 2D failure body or failure surface
:= failure limit state, termed fracture cigar.

Mathematically described by Eq(14),

1)R,R,R,R,R,,,(F ||
ctc

||
t

||2121  .

Lamina strengths depicted
(figure after VDI 2014, Huybrechts)

Fig. 9. )( 221  3D IFF curve, hoop

wound tubes. Test case 1 in WWFE.
GFRP: E-Glass/LY556 epoxy.

  T62135385701140R ),,,,( .

0.2m,1.1bb || 
 , Eq(4 and 7a)

Fig. 10. 2D-reduced 3D condition
)( 221  IFF curve, hoop wound tubes.

Test case 1 in WWFE [2]
GFRP: E-Glass/LY556 epoxy.

  T62135385701140R ),,,,( ,

0.2m,1.1B || 
 . Eqs(14)

1
R)BRR

m

c
2

m

2||||

21

m

t
2 













 









































.
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Fig. 11. Main sections )( 221  and

)( 12  of the 2D failure body,

originally and after shrinking due to a
distinct IFF degradation. Eq.(15a)

Fig. 12. Design curve with determination of
a stress-based reserve factor in case of load-
stresses.

Mean curve: 1RF ii ),( .

  T)62,135,34,570,1140(R  , 6.0B || .

- Design curve: 1RF ii ),( .

  T)54,128,27,525,1050(R  , 6.0B || .

Fig. 13. Determination of a stress-based reserve
factor in case of load stresses acting together with
residual stresses.
Design curve: 1RF ii ),( .

 
T

||
ctc

||
t
||

)54,128,27,725,1050(

)R,R,R,R,R(R



 

   )DLL(jL   .
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Fig. 14. Determination of reserve factor
in non-linear case.

 
T

||
ctc

||
t
||

)54,128,27,725,1050(

)R,R,R,R,R(R



 

  )DLLj(L 

Fig.16. Non-linear case: Visualisation of
non-proportionality of load increase and
stress increase

Fig. 15. Reasons for permitting linear

analysis, visualised for )( 2121 
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Table 1 Main features of the FMC [1]

• According to the symmetry of a transversally-isotropic material there are 5 strengths, 5 elasticity
quantities and therefore, the FMC postulates 5 failure modes

• Each mode represents one theoretically independent failure mechanism and one piece of the complete
failure surface

• Each failure mechanism is represented by one failure condition. One failure mechanism is governed
by one basic strength and therefore has a clearly defined equivalent stress eq

• Invariant formulations [11] of the failure conditions in order to achieve a scalar potential considering the
material's symmetries are derivable for each mode. Each invariant term in the failure condition is related
to one mechanism observed, causing a volume change or a shape change in the material element

• Curve-fitting of the course of test data is only permitted in the pure failure mode regimes

• For each mode one associated reserve factor emod
sRef is to be determined. The lowest (highest risk) mode

reserve factor displays, where the design key has to be turned

• A probabilistic-based 'rounding-off' approach automatically provides the global reserve factor sfRe

necessary for achieving the design verification.

Table 2 System of strength failure domains for a transversally-isotropic non-porous UD material

SY:=shear yielding, NF:=normal fracture caused by t , SF:=shear fracture

Yielding

SY

Fracture

NF SF



onset

of

yielding yF



onset

of

fracture


||F , 
F (tension) 

||F , 
F , ||F


