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Abstract 
Responses of nonlinear axisymmetric plates with multiple delaminations subjected to a transverse 
concentrated load are approximately solved to evaluate the significance of low velocity foreign object 
damage in quasi-isotropic composite laminates. Relationships between applied load and the 
displacement of the loading point are given based on a mechanical consideration. Effects of transverse 
shear deformation and local indentation are included and the geometrical nonlinearity is also 
considered. The linear terms are derived based on the Mindlin plate theory. The damaged portion is 
modelled as equally spaced multiple circular plates without delamination opening. A superposition 
technique is used to derive an approximated closed-form formula; a global response of intact plate and 
a local problem that is an additional displacement due to the introduction of the multiple delaminations. 
An explicit expression of the energy release rate is derived as a function of geometrical and material 
parameters. The solution agrees well with finite element solutions. 
 
 
1. Introduction 
 

Composite laminates having weak interfaces compared to their superior inplane performances 
are vulnerable to damage due to local bending when subjected to transverse impact and transverse 
concentrated loads [1]. The damage causes significant compressive strength reduction even when the 
damage is in a barely visible state (CAI) [2-5]. There are a number of numerical and/or experimental 
works to study impact damage problems of laminated composites due to its importance in the design 
of aeronautical structures [5-9], such as the relation between the damage and impact energy (or the 
impact force), scale effects, interlaminar toughness, stacking sequence, coupling between the 
delamination and matrix cracks, etc.  

It is very helpful to estimate the various effects of material and structural parameters on impact 
damage problems of the composite laminates by some closed form expression. However, a limited 
number of such analytical works on the topic have been reported due to the geometrical complexity 
and its nonlinear nature. Suemasu and Majima obtained a closed form solution on the delamination 
propagation and quasi-static concentrated force for the linear problem [10] and Rayleigh-Ritz 
approximated solution for the nonlinear problem [11]. It is shown that large nonlinear effect must be 
considered to predict the impact damage. Olsson [12] obtained an analytical expression by separately 
considering bending and membrane components based on a similar idea to the present analysis. 
Suemasu et al. proposed a simple mathematical expression to estimate the significance of the impact 
damage in terms of impact load and impact energy [13] 

A simple and more accurate form of the energy release rate is given for nonlinear plates in terms 
of applied force, damage size and various geometrical and material parameters for both simply-
supported and fixed boundary conditions in the present paper. Then, the solution is compared with 
finite element solutions to demonstrate the applicability of the present theory to the real problem. 
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2 ANALYSYS 

 
2.1 Linear Solution  

Firstly, we consider a linear problem of circular axisymmetric laminates of radius R and thickness 
h as shown in Figure 1(a). Midlin plate theory is used instead of Kirchhoff’s plate theory to consider 
the effect of transverse shear. The loading condition at the loading point is illustrated in Figure 2. The 
problem is expressed as the sum of the indentation of hemispherical indenteor on the rigid foundation 

(Figure 1b) and the deformation due to the locally distributed load equal to the reaction of the 

foundation of the indentation problem(Figure 1c). The contact area changes according to the load, 
while the distribution of the reaction force changes a little. As the effect of the distribution profile of 
the load on the total displacement of the laminate is not significant, uniform distributed force is 
assume at a small portion of a radius bh as shown in Figure 1(d). 

 

 
Figure: 1 Axisymmetric plate with multiple delaminations loaded at its center by hemispherical 

indenter and its modelling  
 
Relations between the internal forces ( bending moment Mr and M and shear force Qr ) and out-

of-plane displacement w and rotation of cross-section   are 
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where r is radial coordinate, Grz is out of plane shear modulus, k=5/6 is shear coefficient and D is 
bending stiffness.  The equilibrium equations are 
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Following nondimensional expressions are introduced. 
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where a and b (<<R) are the radii of delaminations and load-distributing area.  

Fixed and simply-supported boundary conditions are written as 

  1at  

0

 
plates supported-simplyfor 00

plates fixedfor 0
1 

















 


W

M r  (5) 







at  2

0at  finite

PbQz

 

Considering  2<<1, the linear solution satisfying the boundary and the continuity conditions for 
the deformations and internal forces at the connecting position ( = ) is approximately obtained as 
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2.2 Local Indentation 
 

   The analytical result of the local indentaion of a stiff hemispherical head indentor is introduced 
here neglecting the existence of delaminations[14]. 
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 2ln
8

,
16

2
0

1

32

20
hR

DK
A

hRR

DB
A

I


















  

    

 
     rzzzrzzzrr

zz

zrrz
zrrz

z

rz

zrz

zrrz

CCkkCCkk

kkkk

C

C
K

EE

G

EG
B

22111122

21212211

21
0

21

11

1

11
211

1

8

3

















































 

 
 

  
 

rz
zrrz

zr
rz

zrrz

z
zz

zrrz

zrrz
rr

GC
E

C

E
C

E
C















44,
21

21

1
,

211

1










 

    

44

44

44

2
44

2
4444

2

1

2

422

CC

CC
k

CC

CCCCCCCCCCCCC

rz

jrr
j

rr

zzrrrzrzzzrrrzrzzzrr

















 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials  
Munich, Germany, 26-30th June 2016 4 

Hiroshi Suemasu 

 

The local indentation for delaminated laminates can be roughly estimated by this equation as a 
function of the applied load and the elastic constants of the laminates as well as its thickness and the 
radius of the indenter head. 
 
2.3 Nonlinear Solution 

Low velocity and large mass impact response may be replaced by a quasi-static concentrated load 
problem [13]. Load-displacement histories of impact damaged plates can be well expressed by those of 
the plate with an equivalent number of equally spaced multiple circular delaminations. Considering the 
facts, expresions to roughly estimate the significance of the impact damage will be derived. Circular 
transversely-isotropic laminates of radius R and thickness h constrained at their boundary are 
considered. The plates have N-1 multiple circular equally-spaced delaminations of radius a. The 
bending stiffness of the damaged portion devided into N equal thickness ligaments reduces to 1/N2. 

The plates are loaded by a quasi-static load P at its center as shown in Figure 2(a), the delaminated 
portion deforms significantly and shows very large nonlinearity, while the intact portion usually 
deflects a little and shows slight nonlinearity. Membrane and shear stiffness reduces only little even by 
the introduction of multiple delaminations. The approximated response can be given by superposing 
three problems (b), (c) and (d). The sum of the applied load of three problems is same as that of 
problem (a).   

 

 
Figure 1:  A circular plate with multiple circular delaminations subjected to a concentrated load at 

its center can be expressed as a Superposition of three problems 
 

In the problem (b) an equal magnitude distributed shear stress to that existing at the corresponding 
interfaces in the intact plate is assumed at the delaminated surface. The solution of the problem (b) is 
same as that of the intact plate (b'). The second and the third problems are piled N circular panels fixed 
at the delamination boundary. The opposite direction same magnitude loads are applied for the 
Problems (c) and (d). All the delaminated ligaments are assumed to deflect together. Since membrane 
and shear stiffness are unchanged due to the introduction of the multiple delaminations, the necessary 
load to produce same deflection as the intact plate reduces same rate as the bending stiffness reduction. 
In problem (c) an opposite sense shear stress to that of problem (b) is given at all the delamination 
surfaces. Linearized solution of this problem causes no deflection at the loading point. No constraint 
exist to the relative slipping at the delaminated surface for problem (d). Then, the solutions of the load 
displacement relations of the two nonlinear plate problems are needed, that is, a global base plate (b') 
and a thin delaminated plate (d').  
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The following nondimensinal relation between the load p0 and a normalized displacement q0 is 

assumed for intact plates (case of Figure 2(b')) [13].  

  p0 =kL0 q0 + kN0q0
       (11) 

where kL0=(cb+cs)1. The coefficients of the nonlinear terms kN0 and 0 depending on the boundary 
conditions and dimensions of the plates are numerically determined. (If the deformed shape of the 
plate did not change during the deflection, the parameter 0  would equal three.)  The bending 
compliance of the delaminated portions is N2(=NN-3) times larger.  

Relation between the load and displacement for the case Figure (d') is also derived following same 
rule as the global plate. Since the additional deformation starts from the equilibrium state of the global 
deformation (Figure b), the boundary of the local additional deformation is assumed to be fixed at its 
periphery and the nonlinear effect of inplane stress before the introduction of the delaminations must 
be incorporated in the load displacement relation.  
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The equivalent initial normalized displacement s must be a function of the global normal displacement 
q0. It is not clear how to determine the relation between s and q0. In the present paper we determined to 
use the relative displacement from the damage boundary to the centre t~  of the damaged portion of 
the intact plate as illustrated in Figure 3. Then, 
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Present expression coincides with the linear solution Eq. 9 when the nonlinear term is neglected. 

  
  

Figure 3:  Local model of damaged portion.  
 

2.4 Energy Release Rate 
      When the damages ize is constant, a stored complimentary energy is obtained by integrating the 
displacement  of the loading point by the applied load P. The displacement of the loading point  is a 
sum of the global displacement 0 and local additional displacement 1. Considering Eqs. 11 and 13, 
the complimentary energy is given as 
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where the local displacement q is a function of q0 and the damage size . As C0 is independent of the 
damage size , the energy release rate of uniform simultaneous growth of all delaminations can be 
given by differentiating the energy C1 with respect to delamination area.  
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Differentiating both sides of Eq. 13 by  under the condition P=constant, the following relation is 
derived after some manipulations. 
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Substitution of Eq.18 into Eq.17 yields a normalized energy release rate  as 
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The normalized energy release rate  is a function of q0, that is, the applied load p0. The equilibrium 
path of P and  when  = cr can be obtained numerically with increasing the parameter.  
 

3. RESULTS AND DISCUSSIONS 

Owing to the limit of space we only show the case of simply-supported plates. The center 
deflection of simply-supported intact plate is plotted against the applied load in Figure 4. The effects 
of the shear deformation, local indentation and nonlinearity are well expressed by the present 
approximation(k0=0.115 and 0=2.80). The following analyses are conducted by using the values and 
the values k1=0.450, 1=2.57 are chosen for fixed boundary and the local deformation of damaged 
portion. The effects of local indentation and the deformation due to the trasverse shear force are not 
very small but some effect on the impact load. Both effects increase with the thickness of the plate.   

The relationships between the nondimensional applied load p0 and the normalized deflection /h 
are plotted in Figure 5. The present solution showed good agreement with the finite element solution 

for N=4 even for large  (=0.4). Though the present definition of the equivalent initial normalized 

displacement s is not rigorous, the additional displacement can be obtained well and the present 
solution is sufficient for the rough estimate of the damaged plate response, while the effect s had better 
be obtained based on a rigorous mechanical development to obtain more physically reliable solution.  

The square root of the nondimensional energy release rate   is plotted against the applied load 

for several cases of  when N=8 and compared with finite element results as shown in Figure 6. The 

present results excellently agree with the finite element solutions for a wide range of the load. The 
present analysis is appropriate to evaluate the stability of delaminations during the indentation loading. 
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The larger the delamination radius  is, the less the energy release rate increases with the load. It is 
because the membrane term becomes dominant with the increase of the delamination size and number 
when the load is constant. As the energy release rate decreases with the growth of the delaminations, 
the load must be increased to keep the delaminations to grow.  

 

 
Figure 4: Nonlinear relation between the load and deflection for the fixed circular plate 

 

 
Figure 5: Load-displacement relation for simply-supported plate with three delaminations(N=4) 

 

 
Figure 6: Relationship between load and energy release rate for simply-supported plate with three 

delaminations(N=8) 
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4. CONCLUSIONS 

       An analytical solution is proposed for the impact damage problem, where the energy release rate 
for the simultaneous growth of multiple circular delaminations is given as an integral form of applied 
displacement for simply-supported and fixed boundary conditions. The results showed the local 
indentation of the indenter and the effect of the shear are usually small for the rough estimate of the 
damage. The present solutions agree well with finite element results. The expression can be used for 
the rough estimate of the significance of impact damage in terms of applied energy, interlaminar 
toughness and dimensions of the laminates. The effect of stacking sequence may be taken into account 
through the number of the delaminated ligaments N in the thickness direction. 

 
This paper is based on results obtained from a project commissioned by the New Energy and 

Industrial Technology Development Organization (NEDO). 
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