
ECCM17 - 17th European Conference on Composite Materials

Munich, Germany, 26-30th June 2016 1

STRATEGIES FOR MODELLING DELAMINATION GROWTH
USING ISOGEOMETRIC CONTINUUM SHELL ELEMENTS

Joris J.C. Remmers1, Martin Fagerström2

1Eindhoven University of Technology, Department of Mechanical Engineering

Email: J.J.C.Remmers@tue.nl, Web Page: http://www.tue.nl/mechmat
2Chalmers University of Technology, Department of Applied Mechanics

Email: Martin.Fagerstrom@chalmers.se, Web Page:

http://www.chalmers.se/en/departments/am/research/material/Pages/default.aspx

Keywords: Isogeometric Analysis, Delamination, Continuum Shell Formulation, Cohezive zone

method

Abstract

The computational efficiency of CAE models and methods for analysing failure progression in com-

posites is important to enable their use in full scale models. In particular, efficient approximation and

solution methods for delamination modelling is crucial to meet today’s requirements on virtual develop-

ment lead times. For that purpose, several papers have been published that present alternative methods

for modelling concepts which support laminate failure analyses requiring only one shell element through

the thickness and where arbitrary delamination propagation is accounted for only in areas where it is

needed [1–3]. The proposed new concepts however need to be further developed before they can be

readily applied to solve engineering problems. As for the alternative concept based on an isogeometric

approach by Hosseini et al.[4], there is a need to handle successive introduction of new discontinuities

by means of knot-insertion in an automated fashion. To this end, better predictions of the through-

the-thickness distribution of out-of-plane stresses are needed [5]. In this paper we focus on the further

development of the isogeometric continuum shell element to allow for an automated insertion of discon-

tinuities.

1. Introduction

Isogeometric analysis (IGA) has recently received much attention in the computational mechanics com-

munity. The basic idea is to use splines, which are the functions commonly used in computer-aided

design (CAD), as the basis functions for the analysis rather than the traditional Lagrange basis func-

tions [6, 7]. Originally, Non-Uniform Rational B-splines (NURBS) have been used in isogeometric

analysis, but their inability to achieve local refinement has driven their gradual replacement by the more

advanced T-splines. An important advantage of isogeometric analysis is that the functions used for the

representation of the geometry in the CAD drawings are employed directly for the analysis. This avoids

the need for a sometimes elaborate meshing procedure. This important feature allows for a design-

through-analysis approach, which yields a significant reduction of the time needed for the preparation of

the analysis model [7]. Another important advantage is the higher-order continuity of the isogeometric

shape functions. This feature allows to calculate higher order derivatives and enables a straightforward

implementation of shell theories which require C1 continuity such as Kirchhoff-Love models [8].

When non-linear material phenomena such as damage or delamination need to be included in the anal-
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ysis, the computation of an accurate three-dimensional stress field in a specific material point in the

shell becomes mandatory. In that case, traditional shell elements fall short and continuum shell elements

are an obvious alternative, e.g. [9]. An isogeometric version of such a continuum shell element has

been presented in [3, 4, 10]. Here, the advantage of an accurate geometric description of the shell mid-

surface is combined with the three-dimensional stress representation of conventional continuum shell

elements. The formulation adopts NURBS (or T-spline) basis functions for the discretisation of the shell

mid-surface, whereas a higher-order B-spline function is used for the interpolation in the thickness di-

rection. An important advantage of using B-spline basis functions is their ability to model weak and

strong discontinuities in the displacement field by knot-insertion [11]. Weak discontinuities are usually

introduced by subdividing the shell in the thickness direction in multiple layers each having a piecewise

polynomial interpolation. Strong discontinuities can be used to model delaminations. Conventionally,

these delaminations are modelled using interface elements, or in a more general manner, by exploiting

the partition-of-unity property of Lagrange polynomials [1]. The knot-insertion technique allows to do

this in an isogeometric analysis formulation in a straightforward manner, as demonstrated by Hosseini et

al. [3].

In this paper, we extend the isogeometric continuum shell element [3] such that the order of interpolation

of the displacement field in the thickness direction is adapted automatically. In this way, we can start

the analysis with an computationally efficient lumped element, which shows a close resemblance to tra-

ditional shell elements. When the stress state in the element increase, the basis function in the thickness

direction are enhanced by knot-insertion to explicitly model the weak discontinuities at the layer inter-

faces. Finally, delamination is modelled by another knot-insertion step to arrive at basis functions with

strong discontinuities.

This paper is ordered as follows. In the next section, we will give a concise review of the isogeometric

continuum shell element, followed by a few numerical examples in Section 3. A strategy to perform

the automatic knot-insertion to enhance the interpolation in thickness direction is presented in Section 4.

Since the out-of-plane stresses in the thickness direction of the lumped element are of a rather poor

quality, an algorithm to reconstruct these stresses [5] is presented as well. The paper is closed with some

conclusions and an outlook to future developments.

2. Isogeometric continuum shell element

The kinematic relations and the discretisation of the isogeometric continuum shell element, discussed in

this section, are presented in detail in Hosseini et al. [3].

2.1. Kinematics and equilibrium equations

Figure 1 shows the undeformed and the deformed configuration of a continuum shell element. The

reference surface of the shell is denoted by S0. The variables ξ and η are the local curvilinear coordinates

in the two independent in-plane directions, and ζ is the local curvilinear coordinate in the thickness

direction. The position of a material point within the shell body in the undeformed configuration is

written as a function of the three curvilinear coordinates:

X(ξ, η, ζ) = X0(ξ, η) + ζD(ξ, η) , 0 ≤ ζ ≤ 1 (1)

where X0(ξ, η) is the projection of the point on the reference surface of the shell and D(ξ, η) is the

thickness director perpendicular to the surface S 0 at this point.

In any material point, a local reference triad can be established. The covariant base vectors are then

obtained as the partial derivatives of the position vectors with respect to the curvilinear coordinates Θi =
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Figure 1. Kinematics of the continuum shell in the undeformed and in the deformed configuration. The

corresponding covariant triads for any point in the shell body are denoted by Gi and gi.

[ξ, η, ζ]. First, we define a set of basis vectors on the reference surface in the undeformed configuration

as:

Eα =
∂X0

∂Θα
, α = 1, 2 and E3 = D =

E1 × E2

||E1 × E2||
t (2)

where t is the thickness of the shell. Now, using Equation (1), the covariant triad for any point within the

shell body is obtained as:

Gα =
∂X

∂Θα
= Eα + ζD,α , α = 1, 2 and G3 = D (3)

where the subscript comma denotes partial differentiation.

The position of the material point in the deformed configuration x(ξ, η, ζ) is related to X(ξ, η, ζ) via the

displacement field u(ξ, η, ζ) as:

x(ξ, η, ζ) = X(ξ, η, ζ) + u(ξ, η, ζ) (4)

The displacement field u can be of any order which is in contrast to the standard continuum shell for-

mulation where an internal stretch term is added to obtain a quadratic term in the displacement field in

the thickness direction [9]. The covariant triad at a material point in the deformed configuration gi can

be calculated in a similar fashion and is used to construct the Green-Lagrange strain tensor. The balance

equations are expressed in a Total Lagrange formulation and the resulting system of non-linear equations

is typically solved in an incremental - iterative manner. Further details on the derivation of the balance

equations and the solution procedure can be found in [3, 4].

2.2. Discretisation

The mid-surface of the shell is constructed using NURBS or T-spline basis functions. The displacement

field in the through-the-thickness direction is discretised using higher order B-spline basis functions [4].

In this way, a B-spline volume patch is created by multiplying a bivariate and a univariate spline func-

tion. Because of the higher order continuity of the discretisation in thickness direction, the strain field

varies at least linearly over the thickness, which is important to avoid thickness locking [9]. The B-spline

basis functions that are used to construct the displacement field in the through-the-thickness direction is

Cp−k continuous at a knot with multiplicity k [12]. This means that we are able to control the continuity

of the basis functions at a knot by arbitrarily selecting its multiplicity. This property is useful in mod-

elling traction-free cracks and adhesive interfaces (strong discontinuity) and layered structures with C0

continuity between the layers (weak discontinuity) [11].
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Figure 2 shows the steps in order to make a discontinuity in the thickness direction of a shell structure.

Assume that a quadratic B-spline basis function hi defined over a knot vector T = [0, 0, 0, 1
2
, 1, 1, 1] has

been used. This gives us four basis functions which are all C1 continuous at ζ = 1
2
. In the remainder,

this element will be called the lumped element. Now suppose that we want to have a composite shell

consisting of two layers of equal thickness. The deformation of composite structures requires a unique

displacement at the interfaces and different strain fields in the adjacent layers. In the example of Figure 2

this is simply achieved by having a displacement field which is C0 continuous at the interface ζ = 1
2
. This

leads to the new knot vector T = [0, 0, 0, 1
2
, 1

2
, 1, 1, 1]. Henceforth, we will denote this element as the

layered element. Subsequently, the complete separation of the layers is obtained if we insert the second

knot as: T = [0, 0, 0, 1
2
, 1

2
, 1

2
, 1, 1, 1], and this element will be denoted as the discontinuous element.

Figure 2 shows the corresponding basis functions through the knot insertion process.
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Figure 2. Schematic representation of introducing a discontinuity in the thickness direction of a shell.

Weak and strong discontinuities between the layers of a composite shell are created by knot-insertion. In

the remainder of this chapter, the three configurations will be denoted by lumped, layered and discontin-

uous (from left to right).

3. Numerical Examples

The performance of the continuum shell element is first studied in the simulation of the deflection of a

multi-layer composite panel. Conventionally, these structures are simulated with a zero-thickness shell

element. This is generally sufficient for calculating displacements, but it does not allow for computing

the stresses and strains in the individual layers accurately.

We consider the laminate shown in Figure 3 [4]. The panel consists of six layers of a unidirectional

material, with a stacking sequence [0, 90, 0]s. Each layer is 0.2 mm thick, so that the total thickness of the

shell is 1.2 mm. The layers can be modelled as transversely isotropic. The panel is simply supported on

all four sides and is loaded by a distributed out-of-plane load with amplitude q0 = 1 MPa. The panel has

been simulated for three different discretisations: second-order in the thickness direction, fourth-order in

the thickness direction (denoted as lumped(2) and lumped(4), respectively, in Figure 2) and second-order

per layer with weak discontinuities at the boundaries between the layers (layered(2) in Figure 2). A

reference solution for the out-of-plane displacement of the mid-point is obtained from classical laminate

theory. Figure 4(a) shows σxx in the mid-point of the panel as a function of the thickness coordinate of

the shell obtained for different discretisations. The results from one second-order and one fourth-order

B-spline element, lead to the same stress distribution as that of a second-order B-spline per layer (weak

discontinuities at layer boundaries). All the results are in agreement with the reference solution from the

classical laminated plate theory.
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Figure 3. Geometry and loading conditions of a rectangular panel. All four edges are simply supported.
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Figure 4. Stresses at the mid-point as a function of the thickness of the panel for lumped and layered

discretisations with B-splines of various orders in thickness direction. The thickness of the panel is

1.2 mm [4].

Next, the ability of the shell element to compute interlaminar stresses is examined. This issue is of

importance when damage and failure of composite materials need to be considered in the simulations.

The normal stress σzz is presented in Figure 4(b) as a function of thickness of the shell. By using second-

order and third-order B-splines per layer, the layered (2) and layered (3) elements, respectively, which

are C0 continuous at the interfaces, we can capture a σzz distribution in the thickness direction, which

is zero through most of the thickness and equals q0 = 1 MPa at the top surface. Adopting just one

element of second-order and of fourth-order B-splines, lumped (2) and lumped (4), respectively, for the

discretisation in the thickness direction results in a fluctuation of the σzz distribution. From these results

it is concluded that the lumped elements fail to accurately compute σzz stresses. In order to apply a stress

based criterion to upgrade these elements to layered, we need to reconstruct these stresses.

In the next example delamination propagation is simulated in a curved panel. The geometry of the

panel is shown in Figure 5. The panel is considered to have two isotropic layers with identical elastic

properties. An initial delamination is taken over an angle π
8
. The curved panel is clamped at one edge and

subjected to a constant distributed load of qx. This provides a suitable test case to investigate mixed-mode

delamination propagation with large rotations at the interface. Delamination growth can be modelled by

extending the weak form of the equilibrium conditions with a cohesive zone traction term. The opening

of this interface is equal to the relative displacements of two material points on either side of the interface.

A detailed description of this term can be found in [3].

Figure 5 shows the deformation of the panel. First, both layers start moving in the loading direction.

In this process damage at the interface starts to grow. After a certain deformation and a certain damage

growth, the lower layer moves in the reverse direction while the top layer keeps moving in the loading

direction. At the final stage, the lower layer has returned to its initial configuration, the interface is fully
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Figure 5. Geometry and deformation of the curved panel with two layers and an initial delamination.

Gray indicates the initial configuration, red represents the areas with damage ω ≈ 1 and blue shows the

areas with ω = 0 [3].

damaged and the upper layer remains in the new configuration.

4. Adaptive discretisation

In the examples in the previous section, the discretisation in the thickness direction is fixed. In principle,

the order of the discretisation can be changed during the simulation by means of a stress based criterion.

To enable such an automatic update of the discretisation, two essential problems have to be addressed.

First in order to enhance the element from lumped to layered, see Fig. 2, the stress state in the lumped

element has to be recovered. Second, the initial values of new degrees of freedom of the element needs

to be determined .

4.1. Stress enhancement scheme

Transverse out-of-plane stresses evaluated directly from the lumped shell element are, as a consequence
of the adopted simplified kinematics, generally of poor accuracy. To still be able to obtain reliable
predictions of these stresses as input to the update criterion, we adopt a strategy similar to Kant and
Manjunatha [13] and Park et al. [14] where improved values are recovered from the 3-dimensional mo-
mentum balance equations. Thus, we reconstruct the transverse stress variation through the thickness of
the shell via thickness integration of these equations. For zero body forces under quasi-static conditions
we can find the transverse stresses as:

σ̂k
α3 = −

k
∑

n=1

ζ(n)
∫

ζ(n−1)

(

σα1,1 + σα2,2

)

dζ +Cα, σ̂k
33 =

k
∑

n=1

ζ(n)
∫

ζ(n−1)

ζ(n)
∫

ζ(n−1)

(

σ11,11 + σ22,22 + 2σ11,12

)

dζdζ +C3ζ +C4, (5)

where ζ is the local transverse direction, ζ(n−1) and ζ(n) denote the lower and upper thickness coordinate

of ply n, •,i and •,ii denote the first and second derivative with respect to coordinate i = [1, 2] and where

•̂ denotes recovered values. As can be seen above, the integration of the 3D equilibrium equations yields

integration constants which in the general case have to be determined from the traction conditions at the

top and bottom shell surface, cf. Främby et al. [15]. It is in that paper also shown that the integration

constants can be used to average the integration error1 over the thickness, such that the discrepancy

between the predicted stresses at the surfaces and the applied tractions is minimised. In this work, we

consider only homogeneous traction boundary conditions at the top and bottom of the shell, whereby we

choose to set these constants to zero.

Furthermore, since the integrations in (5) involves the in-plane first and second derivatives of the in-plane

stress components, these need to be extracted from the solution. In traditional finite element analyses

1Integrating Eq. (5 from the bottom to the top surface often leads to a small resulting shear traction at the top even if the

surface is traction free, due to the numerical errors introduced during the procedure.
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with shells, the in-plane stress components are predicted with good accuracy, cf. as demonstrated in

Fig. 4(a). However, the stress derivatives are not because of only C0 in-plane continuity of the shape

functions. Since the derivatives of these traditional shape functions are discontinuous across element

edges, the resulting stresses are non-smooth also for elastic problems. The benefit from an IGA approach

on the other hand is that stresses indeed are smooth when crossing element edges, and that, thereby, the

derivatives of each component can be computed element wise with good accuracy.

With the current IGA approach, one way to calculate the stress gradients would be to compute the third

gradients of the displacement approximation, and then calculate the stress derivatives directly. However,

this requires a displacement approximation of at least order three, which is believed to be too computa-

tionally expensive. In addition, the through-the-thickness discontinuity in these gradients would not be

well captured with the current lumped approximation. Instead, we make use of the stress smoothness

and project in each element the stress variation in each plane of integration points on a second order

Lagrangian basis (using conventional second order finite element shape functions). This projected stress

field can then, for each layer of integration points, be used to evaluate first and second derivatives of each

stress component in the element centre point at a given position through the thickness. As final step, we

then integrate the stress derivatives according to Equation (5) to obtain the recovered stress profile. As a

result, we obtain an accurate prediction of the through-the-thickness variation of the transverse stresses

even when a lumped thickness discretisation is used.

4.2. Initialisation of new degrees of freedom

When an element is enhanced, the displacement field in a knot is discretised using more degrees of

freedom. The initial value of these new degrees of freedom is not equal to zero, in contrast to most X-

FEM procedures. Instead, these initial values must be calculated using the values of the existing degrees

of freedom (which in turn will obtain other values too).

When the order of an element is changed, the displacement field in the through-the-thickness direction is

updated. Assume that before the update, the interpolation in the thickness direction consists of m shape

functions. Each knot then supports 3m degrees of freedom to construct the x, y and z displacement fields.

These nodal degrees of freedom are denoted a j, where j = [x, y, z]. After the update, the number of shape

functions has increased and the corresponding nodal degrees of freedom are denoted as a∗
j
. The initial

values of this new vector can be obtained from the old nodal values using a minimisation procedure:

Ma∗j = b j ∀ j = [x, y, z] where M =

∫

ζ

Ψ
∗T
Ψ
∗dζ and b =

∫

ζ

Ψ
∗T
(

Ψa j

)

dζ (6)

In this equation Ψ and Ψ∗ denote the array of basis functions in the through-the-thickness direction

before and after the update. Note that this procedure needs to be repeated for the three displacement

components in x, y and z direction.

5. Conclusions

In this paper we present an isogeometric continuum shell element in which the interpolation in thickness

direction can be modified automatically in order to improve the accuracy of the element under high stress

states and to model delamination growth. The use of isogeometric shape functions is essential here. It

enables to introduce weak and strong discontinuities by knot insertion. Furthermore, the higher order

continuity allows to reconstruct the rather poor stress representation. The application of the approach in

large scale analyses however remains to be demonstrated.
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