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1Université Paris-Est, Laboratoire Navier (UMR 8205 CNRS, ENPC, IFSTTAR), 77455
Marne-la-Vallée, France

Emails: rawad@rawadbaroud.com & karam.sab@enpc.fr & caron@enpc.fr
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Abstract
This paper presents a new layerwise model for multilayered plates, named SCLS1, as an abbreviation
of Statically Compatible Layerwise Stresses with first-order membrane stress approximations per layer
in thickness direction. The new model is derived by means of the minimum of complementary energy
principle and is designed to exactly comply with free-edge boundary conditions. As in the LS1 model
proposed in [1], the laminated plate is considered as a superposition of Reissner plates coupled by inter-
facial stresses which are considered as generalized stresses. However, the divergences of the interlaminar
transverse shears are introduced as additional generalized stresses in the SCLS1 model. In order to get
enhanced LS1 and SCLS1 models, a refinement strategy through the thickness is applied by consider-
ing several mathematical layers per physical layer. The refined SCLS1 model increases the accuracy of
the non refined model near singularities. A new version of an in-house finite element program called
MPFEAP, based on SCLS1 model, is developed using an 8-node with 6n-1 d.o.f. per node (n: total
number of layers). The new model shows itself very effective as shown by several comparisons between
the predictions of LS1, SCLS1, their refined versions and Abaqus full 3D FE for straight free edge plate
under uniaxial tension.

1. Introduction

It is well-known that multilayered materials with anisotropic layers exhibit stress concentration at the in-
terfaces between layers, especially at the vicinity of free edges. Indeed, this is due to the large difference
in anisotropy of two consecutive plies, inducing damage such as delamination in cross-ply laminates.
These singularities make usual 3D Finite Element (FE) calculations very costly in calculation time, and
potentially non-converging and mesh dependent. Inspired by Pagano’s model [2], an alternative model
to 3D FE was proposed in [1, 3–11]. In this model, the multilayered material is considered as a super-
position of Reissner-Mindlin plates coupled together by interlaminar stresses which are considered as
additional generalized stresses. This model has been used to study the local responses of multilayered
composites, especially at the interface between layers. In order to make reference to Carrera’s nomen-
clature proposed in [12], this model previously called Multi-particle Model of Multilayered Materials
(M4) was renamed as LS1 which means a Layerwise Stress approach with first-order membrane stress
approximations per layer in thickness direction. The LS1 model that shows efficiency in representing
edges effects and singularities in inter- and intra-layers, calculates complex 3D multilayers using 2D
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plane mesh and has been validated by 3D FE and comparisons with analytical solutions. In addition to
the foregoing, a refined LS1 model was presented in [9] by introducing several mathematical layers per
physical layer in order to capture the stress concentrations occurring in delaminated multilayered plates
under uniaxial tension. It was proved that the proposed layerwise mesh strategy improves considerably
stress and energy release rate estimations given by the non refined LS1 model [8]. Nevertheless, the
non refined LS1 model shows itself very effective in the simulation of mode I (Double Cantilever) and
mode II (End Notched Flexure) delamination tests on multilayered plates [10], and in the simulation of
delamination propagation in multilayered materials at 0◦/θ◦ interfaces [11].

Although the LS1 model and its refined version are very powerful and effective models, several improve-
ments can be still achieved. Without a doubt, the 3D stress free boundary conditions cannot be precisely
met by these models, and besides, as these models are derived by mean of the Hellinger-Reissner mixed
variationnal principle, there is no theoretical guarantee of the convergence of the refined LS1 model to
the 3D model, as the number of mathematical layers per physical layer increases. So as to enhance the
LS1 model, a new layerwise model called Statically Compatible LS1 (SCLS1), is presented where the
laminated plate is still considered as a superposition of Reissner plates coupled by interlaminar stresses.
However, the divergences of the interlaminar transverse shears are considered as additional generalized
efforts. The new model is determined by means of the minimum of the complementary potential energy
guaranteeing the convergence of its refined version to the exact 3D model, as the number of mathematical
layers per physical layer increases. Besides, the new model has been implemented in a new version of
the in-house FE code MPFEAP (MultiParticle Finite Element Analysis Program).
The construction of the SCLS1 model will be summarily described in the next section. In order to vali-
date this model, a numerical example corresponding to a free edge plate under uniaxial tension will be
presented and comparisons will be made between LS1, SCLS1, refined LS1, refined SCLS1 and full 3D
FE models.

2. Theoretical formulation of the statically compatible model SCLS1

In this section, a new model for multilayered plates named SCLS1 is described. The SCLS1 model is
derived from the 3D exact model by considering Statically Compatible Layerwise Stresses with first-
order membrane stress approximations per layer in the thickness direction. The generalized stresses of
the proposed model are Reissner-Mindlin plate’s stresses per layer in addition to interlaminar shear and
normal stresses at the interfaces between layers and the divergences of the interlaminar shear stresses.
The detailed description of the model can be found in [13].

2.1. Static

The basic assumption of the model is to consider in-plane stresses which are layerwise linear in the
thickness direction, z. As a consequence of this assumption and 3D equilibrium equations, the out-of-
plane stresses become necessarily layerwise parabolic in z for transverse shears, and layerwise cubic in
z for normal stresses. Taking into account the continuity of the out-of-plane stresses at the interfaces
between layers, it can be shown that the stresses fields in layer i, for 1 6 i 6 n, are necessarily of the
form:

σ3D
αβ (x, y, z) = Ni

αβ(x, y)
Pi

0(z)

ei +
12
ei2

Mi
αβ(x, y)Pi

1(z) (1)

σ3D
α3 (x, y, z) =Qi

α(x, y)
Pi

0(z)

ei +
(
τi,i+1
α (x, y) − τi−1,i

α (x, y)
)

Pi
1(z)+(

Qi
α(x, y) −

ei

2

(
τi,i+1
α (x, y) + τi−1,i

α (x, y)
)) Pi

2(z)

ei

(2)
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σ3D
33 (x, y, z) =

(
1
2

(
νi,i+1(x, y) + νi−1,i(x, y)

)
+

ei

12

(
πi,i+1(x, y) − πi−1,i(x, y)

))
Pi

0(z)+(
ei

10

(
πi,i+1(x, y) + πi−1,i(x, y)

)
+

6
5

(
νi,i+1(x, y) − νi−1,i(x, y)

))
Pi

1(z)+

ei

12

(
πi,i+1(x, y) − πi−1,i(x, y)

)
Pi

2(z)+(
ei

2

(
πi,i+1(x, y) + πi−1,i(x, y)

)
+

(
νi,i+1(x, y) − νi−1,i(x, y)

))
Pi

3(z)

(3)

Here, the superscripts i and j, j + 1 indicate layer i and the interface between layer j and j+1 with
1 6 i 6 n and 1 6 j 6 n − 1, respectively. By extension, the superscript 0, 1 refers to the lower face
of the plate and the superscript n, n + 1 refers to its upper face. Greek subscripts α, β, γ, δ,... indicate
the in-plane components (x,y) and go through 1, 2. Latin subscripts k, l, m, n,... indicate the components
(x,y,z) and go through 1, 2, 3. Ni

αβ, Mi
αβ and Qi

α are generalized stresses associated to layer i, τi,i+1
α , νi,i+1

and πi,i+1 are generalized stresses associated to the interface between layers i and i + 1. The polynomials
Pi

k, k = 0, 1, 2, 3, are the orthogonal Legendre-like polynomial basis defined on layer i for h−i ≤ z ≤ h+
i :

Pi
0(z) = 1

Pi
1(z) =

z − h̄i

ei

Pi
2(z) = −6

(
z − h̄i

ei

)2

+
1
2

Pi
3(z) = −2

(
z − h̄i

ei

)3

+
3
10

(
z − h̄i

ei

) (4)

where in each layer i, h−i , h+
i and h̄i are , respectively, the bottom, the top and the mid-plane z coordinates

of the layer, and ei = h+
i − h−i is its thickness. Hence, we have h−i+1 = h+

i for all 1 6 i 6 n − 1. By
convention, we set h+

0 = h−1 and h−n+1 = h+
n .

Reciprocally, the generalized stresses can be obtained from the 3D stresses by the following formulas:

Ni
αβ(x, y) =

∫ h+
i

h−i

σ3D
αβ (x, y, z)dz

Mi
αβ(x, y) =

∫ h+
i

h−i

(z − h̄i)σ3D
αβ (x, y, z)dz

Qi
α(x, y) =

∫ h+
i

h−i

σ3D
α3 (x, y, z)dz

τ
j, j+1
α (x, y) = σ3D

α3 (x, y, h+
j ) = σ3D

α3 (x, y, h−j+1)
ν j, j+1(x, y) = σ3D

33 (x, y, h+
j ) = σ3D

33 (x, y, h−j+1)

(5)

Note that, unlike all the other introduced generalized stresses, π j, j+1 defined on the interface between
layer j and layer j + 1 is a new generalized stress which was not considered in the LS1 model.

2.2. Kinematics

It is obtained by writing the weak form of the statical compatibility conditions on σ3D:∫
Ω

σ3D
kl,luk dxdydz = 0 (6)

The generalized displacements are defined as follows, where i = 1, ..., n and j = 1, ..., n − 1:

U i
α(x, y) =

∫ h+
i

h−i

Pi
0(z)

ei uα(x, y, z) dz, (7)
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Φi
α(x, y) =

∫ h+
i

h−i

12
ei2

Pi
1(z)uα(x, y, z) dz, (8)

U i
3(x, y) =

∫ h+
i

h−i

Pi
0(z)

ei +
Pi

2(z)

ei

 u3(x, y, z) dz, (9)

W i
±(x, y) =

∫ h+
i

h−i

Pi
1(z) ±

Pi
2(z)
2

 u3(x, y, z) dz (10)

V j, j+1(x, y) = W j
−(x, y) −W j+1

+ (x, y) (11)

U i
α(x, y), U i

3(x, y), Φi
α(x, y) are the five Reissner-Mindlin generalized displacements of layer i already

introduced in the LS1 model: respectively, the two in-plane displacements, the vertical displacement and
the two bending rotations. In contrast, V j, j+1(x, y) is a new kinematical variable, having the dimension
of an area, which is dual of the static variable π j, j+1(x, y) defined on interface j, j + 1. The generalized
strains dual of the generalized stresses Ni

αβ,M
i
αβ,Q

i
α, τ

j, j+1
α , ν j, j+1, π j, j+1 for i = 1, ..., n and j = 1, ..., n−1

are respectively calculated in terms of the generalized displacements as:

εi
αβ =

1
2

(
U i
α,β + U i

β,α

)
,

χi
αβ =

1
2

(
Φi
α,β + Φi

β,α

)
,

γi
α = Φi

α + U i
3,α,

D j, j+1
α = U j+1

α − U j
α −

e j

2
Φ

j
α −

e j+1

2
Φ

j+1
α + V j, j+1

,α ,

D j, j+1
ν = U j+1

3 − U j
3,

λ j, j+1 = V j, j+1.

(12)

2.3. Constitutive equations

The generalized constitutive equations of the SCLS1 model that link the generalized stresses to the gen-
eralized strains are derived by using the stress energy formulation. Assuming that the fourth-order com-
pliance tensor of layer i, Si = (S i

klmn), is monoclinic in direction z: S i
αβγ3 = S i

α333 = 0, we obtain the
following membranar, bending and transverse shear constitutive equations of layer i, respectively,

εi
αβ =

1
ei S i

αβγδN
i
γδ + S i

αβ33

(
1
4

(
νi,i+1 + νi−1,i

)
+

ei

24

(
πi,i+1 − πi−1,i

))
(13)

χi
αβ =

12
ei3

S i
αβγδMi

γδ +
1
ei S i

αβ33

(
3
5

(
νi,i+1 − νi−1,i

)
+

ei

20
(πi,i+1 + πi−1,i)

)
(14)

γi
α =

6
5ei S i

α3β3Qi
β −

1
10

S i
α3β3

(
τi,i+1
β + τi−1,i

β

)
(15)

and the following shear, normal and for the π generalized stress constitutive equations of interface j, j+1,
respectively,

D j, j+1
α = −

1
10

S j
α3β3Q j

β −
1
10

S j+1
α3β3Q j+1

β −
e j

30
S j
α3β3τ

j−1, j
β

+
2
15

(
e jS j

α3β3 + e j+1S j+1
α3β3

)
τ

j, j+1
β −

e j+1

30
S j+1
α3β3τ

j+1, j+2
β

(16)
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D j, j+1
ν =

9
70

e jS j
3333ν

j−1, j +
13
35

(
e jS j

3333 + e j+1S j+1
3333

)
ν j, j+1 +

9
70

e j+1S j+1
3333ν

j+1, j+2

−
13
420

(e j)2S j
3333π

j−1, j +
11

210

(
(e j)2S j

3333 − (e j+1)2S j+1
3333

)
π j, j+1 +

13
420

(e j+1)2S j+1
3333π

j+1, j+2

+
1
4

S j
αβ33N j

αβ +
1
4

S j+1
αβ33N j+1

αβ +
3

5e j S j
αβ33M j

αβ −
3

5e j+1 S j+1
αβ33M j+1

αβ

(17)

λ j, j+1 = −
1

140
(e j)3S j

3333π
j−1, j +

1
105

(
(e j)3S j

3333 + (e j+1)3S j+1
3333

)
π j, j+1 −

1
140

(e j+1)3S j+1
3333π

j+1, j+2

+
13
420

(e j)2S j
3333ν

j−1, j +
11
210

(
(e j)2S j

3333 − (e j+1)2S j+1
3333

)
ν j, j+1 −

13
420

(e j+1)2S j+1
3333ν

j+1, j+2

+
1
24

e jS j
αβ33N j

αβ −
1

24
e j+1S j+1

αβ33N j+1
αβ +

1
20

S j
αβ33M j

αβ +
1
20

S j+1
αβ33M j+1

αβ

(18)

2.4. The refined SCLS1 model as a static discretization of the 3D model

The refined SCLS1 is obtained by discretizing each physical layer in p mathematical layers as shown
in Fig. 1, for a total of np mathematical layers, then the new refined SCLS1 model will be a better
approximation of the real 3D stress field than the non refined SCLS1 . As the number p of mathematical
layers per physical layer increases, the results will asymptotically coincide with the exact 3D stress
field. An irregular discretization of the physical layers is adopted in order to better describe the stress
concentration at the interfaces between the physical layers as proposed in [9]. As shown in Fig.1, the
layerwise mesh strategy in the thickness direction is in the form of a geometric progression, where hmin

is the thickness of the mathematical layer at the vicinity of the physical interface.

Figure 1. Multilayered plate refined through the thickness (irregular layerwise mesh).

3. Examples and numerical results

A new version of the in-house finite element code MPFEAP is dedicated to the SCLS1 model. The ele-
ment used is an 8-node isoparametric quadrilateral element with 6n-1 d.o.f. per node, n being the number
of layers of the laminates. This element has the same interpolation functions as the LS1 ’s element [6].
Next, comparisons are made between LS1, refined LS1, SCLS1, refined SCLS1 and full 3D FE model (cal-
culated using ABAQUS software) in order to evaluate the performances of the new model. A (90◦, 0◦, 90◦)
laminate under uniaxial tension is studied, the interlaminar shear stress is studied at a straight free-edge.
For the first and third layer, the thickness is e1 = e3 =1mm, the fiber orientation is 90◦ and the elastic
constants are: EL=140GPa, ET =EN=15GPa, GLT =GLN=GT N=5.85GPa, νLT =νLN=νT N=0.21; where L,
T and N refer , respectively, to the fiber, transverse, and thickness direction. For the layer 2, the thickness
is e2 =0.8mm, the fiber orientation is 0◦ and the elastic constants are: EL=160GPa, ET =EN=8.5GPa,
GLT =GLN=4.1GPa, GT N=2.8GPa, νLT =νLN=0.33 , νT N=0.5.
The considered laminate is a plate with a length of 2l and a width of 2b, respectively in the x and y
directions (Fig. 2). The thickness of the laminate following z direction is equal to 2h = 2e1 + e2 and the
middle plane of the plate is located at z=0. Uniform displacements ±∆ in the x direction are imposed at
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the edges x = ±l where the applied overall strain in x axis is ∆/l = 0.05, while the other edges remain
free. The dimension 2b is set to 56mm, whereas the plate is assumed to be so long in the x direction
(l >> b) that the stress, strain components are independent of the x-coordinate far from the ends x = ±l.
As a consequence, instead of modeling the whole plate, it is sufficient to use only one finite element in
the x direction, the size of this element in the x axis direction being irrelevant.
In this example, the normal stress σ33 is singular at the 90◦/0◦ interface near the free edges, while the
shear stress σ23 is null at the free edges and very highly concentrated in the vicinity of these edges. In
Abaqus 3D FE, the element used is C3D8R (3D, 8-node, linear, isoparametric element with reduced inte-
gration). In order to obtain accurate results, a very strong mesh refinement is applied near the free edges
and at the interfaces between layers. Element sizes in y and z axis follow geometric progressions and the
smallest elements are located at the intersection of the free edges with the interfaces between layers. The
smallest element size in y and z axis direction are set to Y = 0.71µm and Z = 7.5µm, respectively.

Figure 2. Laminate geometry, imposed displacements and coordinate system.

3.1. Comparison between 3D FE, SCLS1 and LS1 refined and non refined models

The refined SCLS1 model is studied. Recall that there are two additional parameters in this model: p,
the number of mathematical layers per physical layer, and the thickness of the smallest mathematical
layer hmin. Choosing hmin = 80µm in layer 2, a parametric study on p has been performed. It can be
seen in Fig. 3 that the convergence is quickly reached for p ≥ 3. In the light of the parametric study
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Figure 3. Zoom near the free edge on the distribution of the interlaminar shear stress σ23 predicted by
the refined SCLS1 model, for e2/hmin = 10 and different values of p.

conducted in [13], it can be concluded that the best mesh strategy for the refined models is to use p = 3
and hmin = e2/10 for the refined SCLS1 model, and p = 4 and hmin = e2/10 for the LS1 model.
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In Fig. 4, we plot the distribution of the interlaminar shear stresses σ23 at the 90◦/0◦ interface between
layer 1 and 2 as predicted by 3D FE (FE− in the 90◦ layer and FE+ in the 0◦ layer ), LS1, refined LS1
with hmin = 80µm in layer 2 and p = 4, SCLS1 and refined SCLS1 with hmin = 80µm in layer 2 and
p = 3. It is seen that the refined SCLS1 model is the only model which can efficiently predict both stress
concentration and free boundary condition. It must be highlighted that even if the refined LS1 model
doesn’t comply with the exact 3D boundary conditions at free edges, nevertheless, it predicts the stress
concentration with good accuracy (10%).

0.000 0.001 0.002 0.003 0.004 0.005

y/2b

−100

−80

−60

−40

−20

0

S
ig
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23
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LS1 refined
SCLS1
SCLS1 refined
3D FE-
3D FE+

Figure 4. Zoom near the free edge on the distribution of the interlaminar shear stress σ23 predicted by
the refined and non refined LS1 and SCLS1 models and by the 3D FE model.

4. Conclusion

In this paper, a new statically compatible layerwise stress model for laminated plates called SCLS1, has
been presented. As in the LS1 model initially proposed in [1], the laminated plate is considered as a
superposition of Reissner plates coupled by interlaminar stresses which are considered as generalized
stresses. However, the divergences of the interlaminar transverse shears are introduced as additional
generalized stresses in the SCLS1 model. Also a refined version of the new model is obtained by intro-
ducing several mathematical layers per physical layer. In addition, an 8-node isoparametric quadrilateral
FE with 6np − 1 d.o.f. at each nodal point has been formulated. The FE program called MPFEAP has
been updated in order to take into account the new model. The proposed new FE program presents a 2D
type data structure that provides several advantages over a conventional 3D FE model: simplified input
data, ease of results’ interpretation, very big reduction of calculation time and interlaminar stresses are
given in a straightforward manner without any post-processing work. When considering the number of
d.o.f., the refined SCLS1 model has 6np− 1 d.o.f. in the thickness direction to be compared to 3N where
N is the number of FE nodes in thickness direction (N was up to 200); the d.o.f. for the refined SCLS1
model (p=3 and n=3) are more than 10 times less than for Abaqus 3D FE. As well, the performance of
the new element has been compared with a 3D FE for free edge problem: the proposed SCLS1 model
has better performance because it is able to reproduce both stress concentration and free edge boundary
conditions at a reduced cost. Besides, although the refined LS1 model cannot comply with the exact free
edge boundary conditions, it can still be considered as an acceptable approximation of the SCLS1 model
and thus of the 3D model, for the prediction of stress concentration near free edge boundaries.
Regarding future work, it would be interesting to extend the SCLS1 model to the case where the interfaces
between layers are not perfectly bonded showing an elasto-plastic behavior.
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