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Abstract 
Interlaminar stresses in quasi-isotropic symmetric laminates subject to tension are analyzed 
analytically and numerically. The coupling effects of the upper and lower halves balance each other 
and the total behavior is similar to an isotropic material, from a deformation point of view. This 
balance is due to the resultant bending and twisting moments that correspond to the in-plane stress 
distribution of each sublaminate. According to the analytic approach, in-plane stresses have an 
hyperbolic distribution with zero values at the edges. Consequently, interlaminar stresses are 
maximum at the edges of the strip. The analytic approach is checked with a numerical approach that 
includes the submodeling technique at the edges. According to classical laminated theory, the strength 
of a quasi-isotropic laminate do not depend on tensile direction or on the stacking sequence. 
Nevertheless, the new approach show that edge stresses depend on both, load direction and stacking 
sequence. 
 
 
1. Introduction 
 
In a unidirectional lamina subject to pure tension where the fibers have an oblique orientation with 
respect to the load axis, beside normal strains, shear strains are present [1]. If the tensile load is applied 
in a way where those strains are constrained, shear forces and bending moments appear [2,3]. This 
phenomenon is known as normal-shear coupling. In the case of a multidirectional composite subjected 
to pure tensile loads, in the most general case coupling effects induce shear strains, bending curvatures 
in two planes and twisting curvatures [4]. Thus, it is said that membrane and plate behaviors are 
coupled. If the laminate is symmetric with respect to the middle plane, membrane and plate behaviors 
are not coupled. Thus, if such a laminate is subjected to tensile loads, only in-plane shear deformations 
can appear. In the particular case of balanced laminates, normal shear coupling does not occur. 
Moreover, if the laminate is quasi-isotropic, according to Classical Laminated Plates Theory (CLPT) 
the elastic behavior in membrane does not depend on the orientation [5]. Therefore, the strains and 
stresses in the laminate do not depend on the orientation of the load. Nevertheless, Turon et al. [6] 
observed that failure depend on the orientation of the load in tensile tests of quasi-isotropic laminates 
of non-crimp-fabrics.  
 
If the two halves of a symmetric laminate are not symmetric, each of them would suffer bending and 
twisting curvatures under tension if it was loaded alone. Then, each half of the laminate constraint the 
other half to deform freely. If the constrained deformations are bending and twisting curvatures, the 
constraint is carried out by interlaminar shear stresses.  
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The aim of this work is to deepen the analytic approach developed to determine interlaminar stresses 
in antisymmetric laminates, checked with numeric results obtained from Abaqus [7]. The analytic 
model is applied to the case of a quasi-isotropic laminate subject to uniform tension in order to analyze 
the effect of the direction of the applied load and the effect of the laminate layup. According to CLPT, 
those factors do not affect the mechanical behavior of a quasi-isotropic laminate. 
 
2. Analytic approach  
 
2.1.  Displacement and strain field 
 
The upper half of a symmetric laminate with strip geometry subject to tension is analyzed. The 
following displacement field has been assumed: 
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where w is the normal deflection of the laminate and thus the laminate has been considered to be 
inextensible in z-direction. u and v are the in-plane displacements of the laminate which have been 
assumed to be linear functions of the coordinate z. θy is the twisting angle of the laminate. According 
to Eq. (1)3, it is assumed that specimen remains straight along the width. This assumption is based on 
the fact that the length-to-width ratio of the specimen is considered to be great. From Eq. (1), using the 
notation of Daniel and Ishai [5] for shear components, the strains are: 
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where, 
 

 

0 0 0
0, 0, 0, 0,

, , , , ,

                    

      0       

x x y y s y x

x x x y y y xy s x y y x x y y

u v u v  

         

   

       
 (3) 

 
According to Eq. (2)5 it results that 0x r yy w       . Differentiating with respect to y and replacing 

in Eq. (3)6, the twisting curvature is: 
 
 , , , 2xy s x y y x r y y            (4) 

 
2.2.  Stresses, resultant forces and resultant moments 
 
The stress-strain relations for in-plane components without taking into account hygrothermal effects 
is: 
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where 

k
 are in-plane stresses at lamina k,  k

Q are the reduced stiffness coefficients of lamina k, 

 0 are strains of the middle plane and   are the curvatures of the middle plane. Force and moment 

resultants concerning in-plane stress components are given by: 
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The laminate stiffness matrices are: 
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The inverse relation of Eq. (6) is: 
 

 

0

0

0

xx xy xs xx xy xs xx

yx yy ys yx yy ys yy

sx sy ss sx sy ss ss

xx xy xs xx xy xs xx

yx yy ys yx yy ys yy

sx sy ss sx sy ss ss

a a a b b b N

a a a b b b N

a a a b b b N

c c c d d d M

c c c d d d M

c c c d d d M








     
     
     
             

    
    
    

       

 (8) 

 
In the case of out-of-plane shear strain components, constitutive relation at ply k is:  
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As it can be seen in Eqs. (2)5,6 γr and γq do not depend on z and therefore, they are the same as the 
mean values along the thickness r and q . Consequently, the out-of-plane constitutive equations have 

been expressed in terms of average values through the thickness: 
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where r and q  are mean shear stresses; Vr and Vq are stress resultants induced by τr and τq, 

respectively; ijS are equivalent compliance coefficients; and 2h is the thickness of the sublaminate. 

Since according to Eq. (2)6 0q  , it results that 
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2.3.  Forces and moments of the upper half of a symmetric laminate subject to tension 
 
Equilibrium equations in terms of resultant forces and moments can be obtained integrating along the 
thickness the equilibrium equations concerning stresses [8]. In the general case of any sublaminate of 
thickness 2t obtained of a laminate, equilibrium equations are: 
 

 

   
   
   

   
   

, ,

, ,

, ,

, ,

, ,

0

0

0

0

0

x x s y r r

s x y y q q

r x q y z z

x x s y r r r

s x y y q q q

N N t t

N N t t

V V t t

M M h t t V

M M h t t V

 

 

 

 

 

    

    

    

        
       

 (12) 

 
In Eq. (12) forces and moments correspond to the general sublaminate. It is worth noting that 
interlaminar stresses appear in equilibrium equations. It would be desirable to isolate sublaminates 
with null stresses in the upper and lower faces. 
 
In general, the upper half of a symmetric laminate subject to tension has all kind of coupling effects. It 
has not stresses applied on the upper face. With respect to the lower face, interlaminar shear stresses 
are null due to the symmetry. Then, Eqs. (12) can be applied assuming that q(±h)and r(±h)are null.   
 
Under uniform tension, variations in x are null and transverse loads have not been applied. Then, 
according to Eq. (12)1 Ns is uniform and as Ns = 0 at the edges, Ns vanishes along the width. By 
analogous reasoning in Eqs.(12)2 it results that Ny = 0. Then, the laminate is supposed to be under the 
action of the Nx known force and Mx, My and Ms unknown moments. These moments can be 
determined from from Eq. (8) after imposing the deformation conditions of the whole laminate, 
namely 0x y y      . Then, according to Eq. (4) it results ,s ry   and thus: 

 

 

,

xx x xy y xs s xx x

xy x yy y ys s yx x

xs x ys y ss s r y sx x

d M d M d M c N

d M d M d M c N

d M d M d M c N

   

   

   

 (13) 

 
From Eq. (13) Mx, My and Ms are: 
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With respect to Eq. (12)3  z h   is unknown. Otherwise, Eqs.(12)4,5 reduce to: 
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Differentiating Eq. (14)1 with respect to y, assuming that Nx is uniform along the width ,x yM  can be 

extracted, being: 
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Differentiating Eq. (8)6 with respect to y, replacing Eq. (16) and (17): 
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Taking into account Eq. (11): 
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Eq. (19) can be written as: 
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The general solution of Eq. (20) is: 
 
 1 2( ) sinh coshr y C ky C ky    (21) 
 
Being 2b the width of the laminate, replacing Eq. (21) in the expression of Ms obtained from Eq. (14) 
and imposing that Ms = 0 at the edges y = ±b, C1 and C2 are determined: 
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Replacing Eq. (22) and (21) in Eq. (14) bending and twisting moments are: 
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The terms out of parenthesis in Eq. (23) correspond to CLPT. Replacing the moments given in Eq. 
(23) and the applied axial force Nx in Eq. (8), the strains and curvatures of the reference plane are 
obtained. Replacing those terms in Eq. (5) the in-plane stress components x, y and s are determined 
for each lamina. 
 
2.4.  Interlaminar stresses 
 
Equilibrium equations of stresses are given by: 
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In Eq. (24) the derivatives with respect to x are 0. The derivatives with respect to y of y and s are 
function of the derivatives of the moments given in Eq. (23). Integrating Eq. (24)1 and (24)2 

interlaminar shear stresses ( , )r r y z   and ( , )q q y z   in each lamina are determined, respectively. 

Integration constants are calculated by the continuity condition of interlaminar stresses. Finally, 
integrating Eq. (24)3 interlaminar normal stresses ( , )z z y z   are determined. In this case, 
integration constants are determined by continuity condition of normal stresses. 
 
2.5. Equivalent shear stiffness 
 
Equivalent shear stiffness coefficients are obtained equating the strain energy of the actual 
interlaminar stresses with the energy corresponding to averaged values. In a differential surface 
element of the laminate, the energy per unit surface area is: 
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According to Eq. (2) shear strains are the mean values in thickness, as they do not vary in z. Then, Eq. 
(25) can be written as: 
 

 
11

k

k

n z

r r r rz
k

dz   


  (26) 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials  
Munich, Germany, 26-30th June 2016 7 

F. Mujika and J.M. Romera 

 

 
3. Quasi-isotropic laminate 
 
A quasi-isotropic [0/45/90/-45]s laminate is subjected to a tensile axial load of N100 N/mm in the 
longitudinal direction of the laminate as it can be seen in Fig. 1. The material properties correspond to 
the carbon epoxy composite AS4/3501-6 [5], the width is 10 mm and the ply thickness is 0.125 mm. 
 
 

 
Figure 1. Quasi-isotropic laminate under tensile load. 

 
 
When the upper sublaminate is analyzed, only one half of the axial load is taken into account. This 
part would present a twisting curvature and two bending curvatures if it were alone. The sublaminate 
does not actually present any curvature as it is constrained by the twisting moment Ms and the bending 
moments Mx and My. Table 1 shows the moments that corrrespond to CLPT after rotating some angle 
all the plies, which is equivalent to change the tensile load direction [6]. 
 
 

Table 1. Influence of the load direction in the moments of the sublaminate. 
 
Rotation Sublaminate Mx (N·mm) My (N·mm) Ms (N·mm) 

0 [0/45/90/-45] -4.77 0.01 -1.31 
-22.5 [-22.5/22.5/67.5/-67.5] -5.22 -1.51 1.08 
-45 [-45/0/45/90] -2.61 -2.14 1.31 

-67.5 [-67.5/-22.5/22.5/67.5] 0.00 0.00 0.78 
-90 [90/-45/0/45] 2.61 2.14 1.31 

 
 

Table 2. Influence of ply layup in the moments of the sublaminate. 
 
Permutation Sublaminate Mx (N·mm) My (N·mm) Ms (N·mm) 

1 2 3 4 [0/45/90/-45] -4.77 0.01 -1.31 
4 1 3 2 [-45/0/90/45] -1.85 -0.53 1.97 
1 4 2 3 [0/-45/45/90] -5.54 -1.60 0.66 
3 1 4 2 [90/0/-45/45] -0.31 2.69 0.66 
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Table 2 shows the moments according to CLPT obtained for different ply layups of the original 
sublaminate [0/45/90/-45]. The values of Table 1 and Table 2 correspond approximately to the value 
corresponding to y = 0 in the hyperbolic distribution given in Eqs. (23). It is worth noting that the 
maximum stresses at each ply do not change according to CLPT and then, the security factor is the 
same for any of the laminates in Tables 1 and 2. Nevertheless, as moments change, also change Vr and 
Vq and consequently, the distribution of interlaminar stresses. 
 
4. Conclusions 
 
In a general symmetric laminate subject to tension, the upper and the lower halves have a stress state 
which resultant bending and twisting moments avoid curvatures. As these moments depend on the 
width coordinate, there are interlaminar shear stresses that are maximum at the edges. 
 
In the case of a quasi-isotropic symmetric laminate subject to tension, the mechanical behavior does 
not depend on the direction of load application nor the ply layup. Nevertheless, as moments depend on 
these factor, interlaminar stresses too. 
 
For a quasi-isotropic laminate constituted by a series of plies, it is possible to obtain the permutation of 
plies that minimize the effect of interlaminar stresses. Similarly, for a given laminate layup, it is 
possible to get a load orientation where the effect of interlaminar stresses is minimum.  
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