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Abstract. 
A novel technique for predicting thermal deformations of components made of composite laminates 
using finite element models with standard shell elements is introduced. To take into account the effect 
of the coefficient of thermal expansion in the through-thickness direction and the curvature of the 
laminate, appropriate fictitious coefficient of thermal expansions are defined in the in-plane directions. 
To validate the new modelling approach, numerical results have been successfully compared with 3D 
finite element models, showing an excellent agreement. 
 
 
1. Introduction 
 
One of the main drawbacks in the use of composites for manufacturing large structural components is 
the difficulty in achieving acceptable tolerances in the final size and shape of the components. 
 
In a classical autoclave manufacturing process, the final shape of the manufactured component 
depends on the chemical shrinkage of the material during solidification, the adhesion between the 
mould and the component and the thermal shrinkage during cooling after solidification. Most of these 
phenomena are difficult to characterize and present orthotropic behaviour in each layer of the 
laminate, thus being very challenging to accurately predict the final shape of the part from the nominal 
dimensions of the moulds and the lay-ups employed for the component. 
 
In this paper a novel technique for predicting thermal deformations of components made of composite 
laminates using finite element (FE) models is introduced. Although the determination of thermal 
expansions with finite elements is a well-stablished problem, deeply studied in the literature, its 
application to large composite laminate has inherent difficulties that make FE analysis very expensive. 
The main characteristic is that thermal deformations are associated to the different values of the 
coefficients of thermal expansion (CTE) in the orthotropic directions of the composite laminas. For 
that reason, deformation of curved parts is significantly affected by the CTE in the through-thickness 
direction, making necessary the use of 3D elements or special shell elements for modelling the 
problem [1]. 
 
The novel technique introduced in this paper permits the FE modelling of thermal deformations in 
curved laminates using standard shell elements by defining appropriately fictitious in-plane CTE of the 
material to take into account the effect of the curvature of the laminate represented by the shell 
element. To show the accuracy of the method a simple L-shape sample is employed and results 
obtained with the shell FE models are compared with results obtained with solid FE models.  
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The procedure for defining the fictitious in-plane CTE is described, firstly, for curved homogeneous 
orthotropic materials (with the orthotropic directions not necessarily being parallel to the L sides) and, 
secondly, for curved composite laminates. In all cases, results obtained with the shell FE models show 
an excellent agreement with results obtained with the solid FE models. 
 
 
2. Problem 
 
The geometry of the problem considered is shown in Figure 1(a). A L-shaped composite sample of 
width W 16 mm is employed. The length of the flat wings is L 16 mm, the mean radius of the 
curved part is R 3.8 mm and the thickness is t 1.6 mm. Initially the angle formed by the L wings is 
 90°. After cooling, the differences between the through-thickness and the in-plane CTE makes this 

angle to become smaller, phenomenon typically referred as springback or spring-in [2]. Samples have 
been clamped at the extreme of the horizontal wing. Only symmetric laminates are considered, 
therefore the flat parts of the sample remain practically flat after cooling. Thus, the spring-in angle 
  is defined from the displacements of the vertical wing in the direction normal to its plane; see 

Figure 1(b).  
 
Four different lay-ups have been considered: two configurations, [08] and [908], correspond to 
homogeneous materials with in-plane orthotropic directions parallel to the L sides, the third 
configuration, [−458], is also homogeneous but the in-plane orthotropic directions are not parallel to 
the L sides and, finally the fourth configuration, [0,90,+45,−45]S, is a laminate with differently 
oriented layers. 
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(a) (b) 
 
Figure 1. (a) Geometry and dimensions of the problem; (b) boundary conditions and definition of the 

spring-in angle  . 
 
 
Mechanical properties of the layers are defined by: 11E 125 GPa,  3322 EE 10 GPa (with 1 being 
the fibre direction, 2 being the in-plane direction perpendicular to the fibre and 3 the through-thickness 
direction),  312312 GGG 4 GPa,  1312  0.3,  1)2/( 233323 GE 0.25. The so-called 

small Poisson ratio is  1133133121 / EE 0.024. Orthotropic CTE of the laminas are: 

1 −1·10−6 K−1, 2 25·10−6 K−1, 3 50·10−6 K−1. A cooling of T −155 K is imposed. 
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FE models are created using standard MSC.Nastran solid and shell elements with appropriate material 
properties (fictitious in some cases) as detailed in the following section. As shown in Figure 2(a), solid 
FE mesh has only one element per layer in the thickness direction, and the size of in-plane element 
sides are double than the through-thickness side to keep a good aspect ratio in the element. In the shell 
model element size in the straight direction is identical to the one employed in the solid mesh and 
along the curved zone double number of shell elements are employed in comparison to one layer of the 
solid model. Although not shown here for the sake of brevity, once a reasonable size of the element is 
employed results are insensitive to the mesh size, the number of elements needed to obtain a 
reasonable accuracy being much smaller when shell elements are employed. 
 
 

 
(a) (b) 

 
Figure 2. (a) Solid FE mesh; (b) shell FE mesh. 

 
 
3. Definition of material properties in the solid models 
 
Solid FE model are made of MSC.Nastran 8-nodes hexahedral element CHEXA. A uniform mesh of 
solid elements has been used where the y  direction of the element’s co-ordinate system is always 
parallel to the global Y  direction shown in Figure 1(a), the z  direction of the element’s co-ordinate 
system is the through-thickness direction and the x  direction of the element’s co-ordinate system is 
perpendicular to both. As can be seen in Figure 1(a), the orthotropic directions of the material are 
different in the vertical and the horizontal wings of the L sample, and consequently vary along the 
curved zone of the model. To define material properties easily, the material’s coordinate system is 
identified with the element’s coordinate system, using a PSOLID entry. In the element’s coordinate 
system, all elements in each layer have the same material properties. If the fibre direction forms an 
angle   with the x  direction of the element’s co-ordinate system, orthotropic material properties 
defined in the previous section have to be rotated to obtain the material constants. For the sake of 
clarity (and to avoid confusion since no standard notation is employed in the literature) the procedure 
employed for the rotation of the orthotropic properties to obtain the apparent anisotropic properties in 
the element’s coordinate system is described in the following.  
 
Constitutive equation in the orthotropic co-ordinate system of each layer is given by: 
 

][ 3,333 DT
O

D
O

D
O

D
O  Q  ,  TD

O ][ 312312332211
3   ,  

TD
O ][ 312312332211
3   ,  TDT

O TTT ]000[ 321
3,   

(1)
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where ij  and ij , with 3,2,1, ji , are the components of the stresses and strains in the orthotropic 

co-ordinate system of each layer. The components of the stiffness matrix D
O
3Q  are given in the 

Appendix. 
 
Constitutive equation in element’s co-ordinate system in each layer is obtained rotating (1): 
 

][ 3,333 DT
E

D
E

D
E

D
E  Q  ,  D

O
DT

zxyzxyzzyyxx
D

E L 3133 ][][     ,  

D
O

DDDT
zxyzxyzzyyxx

D
E

3131333 ][][][   RLR  ,  

DT
O

DDDT
xyzzyyxx

DT
E TTTT 3,131333, ][][]00[   RLR  

(2)

 
where ij  and ij , with zyxji ,,,  , are the components of the stresses and strains in the element’s 

co-ordinate system. The stiffness matrix D
E
3Q  and the auxiliary matrices D3L  and D3R  used for the 

rotation are given in the Appendix. 
 
 
4. Definition of material properties in the shell models 
 
Shell FE model are made of MSC.Nastran 4-nodes quadrilateral element CQUAD4. Shell element’s 
coordinate system is oriented as described for the solid element’s coordinate system. To define 
material properties easily, the material’s coordinate system in all layers is identified with the element’s 
coordinate system, using a PCOMP entry. Therefore, in the layers where the fibre direction forms an 
angle   with the x  direction of the element’s co-ordinate system, orthotropic material properties have 
to be rotated to obtain the material constants. In the following it is described, first, the procedure 
employed for the rotation of the orthotropic properties to obtain the apparent anisotropic properties in 
the element’s coordinate system and, second, the procedure employed to define the fictitious CTE to 
take into account the curvature of the laminate in the x  direction of the element’s co-ordinate system. 
 
Plane stress constitutive equation in orthotropic co-ordinate system of each layer is given by: 
 

][ ,kT
O

k
O

k
O

k
O  Q  ,  Tkkkk

O ][ 122211   ,  Tkkkkk
O ][ 122211   ,  

TkkkT
O TT ]0[ 21

,   , 
(3)

 

where k
ij  and k

ij , with 2,1, ji , are the in-plane components of the stresses and strains in the 

orthotropic co-ordinate system of layer k , with 1k  being the outer layer (i.e., the layer placed in the 

largest radius) and 8k  being the inner layer. The components of the stiffness matrix k
OQ  are given 

in the Appendix. In the plane zones of the model, i
k
i   , with 2,1i . Definition of CTE in the 

curved zone is not straightforward and will be treated in a separate section below. Plane stress 
constitutive equation of each layer in element’s co-ordinate system is obtained rotating (3): 
 

][ ,kT
E

k
E

k
E
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E  Q  ,  k

O
kTk

xy
k
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DkDTk
xy

k
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k
xx

k
E  1212 ][][][  RLR  ,  

kT
O

DkDTk
xy

k
yy

k
xx

kT
E TTT ,1212, ][][][   RLR  ,   

(4)
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where k
ij  and k

ij , with yxji ,,  , are the in-plane components of the stresses and strains in the 

element’s co-ordinate system. The stiffness matrix k
EQ  and the auxiliary matrices kL  and D2R  used 

for the rotation are given in the Appendix. Stiffness constants and CTE in the plane zones of the model 
depend only on the orientation of the layer and are summarized in Table 1. 
 
Table 1. Stiffness constants and CTE in the plane zones of the model, in element’s coordinate system. 
 

Orientation  kQ11  kQ12  kQ13  kQ22  kQ32  kQ33   k
xx  k

yy  k
xy  

(°)  (GPa)  (106K1) 
0  125.9 3.022 0 10.07 0 4  1 25 0 
90  10.07 3.022 0 125.9 0 4  25 1 0 
 45  39.51 31.51  28.96 39.51  28.96 32.48  12 12  26 

 
The procedure used to define the fictitious CTE to take into account the curvature of the laminate in 
the x  direction of the element’s co-ordinate system in the homogeneous samples, [08], [908] and 
[−458], is different from the procedure used in the inhomogeneous sample [0,90,+45,−45]S. These two 
cases are treated separately in the following sections. 
 
4.1.  Homogeneous samples 
 
One of the difficulties in employing shell elements is that its formulation does not take into account 
the material shrinkage in the through-thickness direction. To overcome this problem, the thermal 
strains of the actual material are considered as a superposition of the thermal strains of two fictitious 
materials. One, named material B, having all CTE equal to 3  and the other, named material A, 

having CTE equal to 3 i , with 3,2,1i . In this manner, when the sample of material B is 
subjected to an uniform temperature change it will suffer a change in size without change in shape. On 
the contrary, the sample of material A will suffer identical change in shape than the sample of the 
original material, (although different change in size). Therefore, the in-plane CTE in each layer of 
materials A and B are initially given by: 
 

31
,

1  kA  ,  32
,

2  kA  ,  3
,

1  kB  ,  3
,

2  kB  (5)

 
The second difficulty in employing shell elements is that each layer k  of the shell has a different 

length, since is located at a different radial position tkRrk )72(
16
1  , with 8,...,1k . Since the 

formulation of classical shell elements does not consider that each layer may have a different length, 
all layers have identical thermal elongations, thus not reproducing the change in shape of the actual 
material. To overcome this problem, CTE of material A along the curved direction x  is modified to 
take into account the different length of each layer: 
 

kA
xx

kkA
xx R

r ,,ˆ    (6)

 
Finally, fictitious CTE along the curved direction x  in each layer is obtained as the sum of the 

fictitious CTE of material A, kA
xx

,̂ , and the CTE of material B, kB
xx

, : 
 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials  
Munich, Germany, 26-30th June 2016 6 

Enrique Graciani, Antonio Blázquez, Jesús Justo and Federico París 

 

kB
xx

kA
xx

kkB
xx

kA
xx

k
xx R

r ,,,,ˆ   , kB
yy

kA
yy

k
yy

,,   , kB
xy

kA
xy

k
xy

,,   . (7)

Fictitious CTE along the curved direction x  in each layer are summarized in Table 2. The remaining 
in-plane CTE are not affected by the procedure described above, therefore are identical to those listed 
in Table 1. 
 
 

Table 2. Fictitious CTE along the curved direction x  in each layer of the homogeneous samples. 
 

Orientation  kA
xx

,   1
xx  2

xx  3
xx  4

xx  5
xx  6

xx  7
xx  8

xx  

(°)  (106K1)  (106K1) 
0  51  10.4 7.71 5.03 2.34 0.34 3.03 5.71 8.39 
90  25  20.4 21.7 23.0 24.3 25.7 27.0 28.3 29.6 
 45  38  5 7 9 11 13 15 17 19 

 
 
4.2.  Laminates 
 
The procedure described above for a homogeneous material is based on the fact that, in that case, the 
spring-in angle,  , can be easily calculated as  Tzzxx )(  . In composite laminates, 
analytical calculation of the spring-in angle can also be determined, although the presence of residual 
stresses makes the calculations more complicated [3]. Therefore, once the spring-in angle   is 

known, an equivalent CTE along the curved direction x  can be obtained as: 
 

zzxx T



   . (8)

 
This equivalent CTE can be modified to take into account the different length of each layer, resulting 
in the following fictitious CTE for each layer of the laminate along the curved direction x : 
 

zzzzxx
kk

xx R

r   )(  . (9)

 
Fictitious CTE along the curved direction x  in each layer of the [0,90,+45,−45]S sample are 
summarized in Table 3. The stiffness properties and the remaining in-plane CTE are not affected by 
the procedure described above. Therefore these properties are defined, in each layer, by the values 
shown in Table 1. 
 
 
Table 3. Fictitious CTE along the curved direction x  in each layer of the composite laminate sample. 

 
(°)  (106K1)  (106K1) 
   xx   1

xx  2
xx  3

xx  4
xx  5

xx  6
xx  7

xx  8
xx  

0.749  3.68  6.20 3.38 0.55 2.27 5.10 7.92 10.7 13.6
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5. Results 
 
Spring-in angle   obtained with the solid and shell FEM models in all samples are listed in Table 4. 
As can be seen, the agreement between the results of both modes is excellent in all cases. To show the 
ability of the shell model to reproduce appropriately the in-plane deformations, as well as the out-of-
plane distortions, the solution of all components of the displacements along the edge AB depicted in 
Figure 1 is shown in Figure 3, for the [908] sample and the [0,90,+45,−45]S sample. 
 
 

Table 4. Results obtained for the spring-in angle in all samples considered. 
 

   (°) [% difference] 

Model  [08] [908] [458] [0,90,45,45]S 
solid  0.711 0.348 0.522 0.744 
shell  0.712 0.343 0.494 0.734 
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Figure 3. Displacements along the edge AB: (a) [908] sample; (b) [0,90,+45,−45]S sample. 

 
 
6. Conclusions 
 
A new modelling procedure which enables the prediction of the spring-in for L-shaped composite 
samples with different stacking sequence using standard shell finite elements (with suitably modified 
coefficients of thermal expansion in the in-plane directions) is presented. To validate the new 
modelling approach, numerical results have been successfully compared with 3D finite element 
models, showing an excellent agreement. The new modelling procedure has a great potential for 
improving the efficiency in the model of more complicated geometries. 
 
Appendix A. Stiffness and rotation matrices 
 

Components of D
O
3Q  are ijQ  with 6,...,1, ji . Non-null components are given by: 

 


 )1( 233211

11



E

Q  ,  


 )( 13321222
2112




E
QQ  , 


 )( 32121333

3113



E

QQ  ,  


 )1( 311322

22



E

Q  ,  


 )1( 211233
33




E
Q  ,  


 )( 13212333

3223



E

QQ ,  

1244 GQ   ,  2355 GQ   ,  3166 GQ   ,  312312133132232112 21   . 

(10)
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Components of k
OQ  are k

ijQ  with 3,...,1, ji . Non-null components are given by: 

 

2112

11
11 1 


E
Qk  ,  

2112

22
22 1 


E

Qk  ,  
2112

2212
12 1 





E

Qk  ,  1233 GQ   . (11)

 

Matrx D
E
3Q  and k

EQ  are given by: 
 

13333133 ]][[][  DDDD
O

DD
E RLRQLQ  ,  1221 ]][[][  DkDk

O
kk

E RLRQLQ  , (12)

 

where rotation matrices D3L  and kL  are: 
 








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
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

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











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sccscs
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D

0000

0000

000

000100

0020

0020

22

22

22

3L  ,  






















22

22

22

2

2

kkkkkk

kkkk

kkkk
k

scscsc

sccs

scsc

L , (13)

 

with cosc , sins , kkc cos  and kks sin . Auxiliary matrices D3R  and D2R  are needed 

to transform the engineering shear strains ( ijij  2 , with ji  ). Therefore, no-diagonal terms of 

D3R  and D2R  are null, while diagonal terms are equal to 1 in the columns corresponding to the 
normal strains and equal to 2 in the columns corresponding to the shear strains. 
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