
ECCM17 - 17th European Conference on Composite Materials     

Munich, Germany, 26-30th June 2016 1 

Paolo A. Carraro, Marino Quaresimin, Michele Zappalorto 

 

 

 

ON THE INTER-FIBRE FAILURE IN FIBRE REINFORCED 

COMPOSITES 
 

Paolo A. Carraro, Marino Quaresimin, Michele Zappalorto 

 

Department of Management and Engineering, University of Padova, Stradella San Nicola 3, Vicenza, 

Italy 

Email: paoloandrea.carraro@unipd.it, marino.quaresimin@unipd.it, michele.zappalorto@unipd.it 

 

 

Keywords: debonding, matrix failure, damage initiation, modelling, finite fracture mechanics 

  

 

Abstract 

In the present work a comprehensive analysis of interfibre failure in fibre reinforced composites is 

carried out, considering the phenomena of fibre/matrix debonding and matrix failure and highlighting 

the influence of the relevant material and geometrical parameters.  

In particular it is shown the existence of a specific value of the fibre radius, Rf
*, which allows one to 

discern whether the fibre/matrix debonding is a stress-driven or an energy-driven interface process. At 

the same time the existence of a second limit value, Rf0, smaller than Rf
*, is argued, which provides the 

condition for the transition from interface to matrix failure. 

 

 

1. Introduction 

The static and fatigue failure of composite structures is the result of a multiscale and hierarchical 

damage process of which the first macroscopic evidence is often represented by the initiation of off-

axis cracks, resulting from the accumulation of damage at the micro-scale in the form of matrix micro-

cracking and fibre/matrix debonding. This makes the prediction of damage initiation at the micro-scale 

of basic importance to develop reliable failure criteria for this class of materials. 

The initiation of off-axis cracks does not lead, necessarily, to catastrophic failure but it can affect the 

global behaviour of the composite (see, for a comprehensive literature review [1,2]) decreasing the 

stiffness and promoting the formation of other failure modes. This phenomenon is very complex to be 

described, especially because the local stress state in the matrix around a single fibre is multiaxial, so 

that a failure criterion needs to be used to combine local stress components. 

Several investigations have been carried out in the past and recent literature to understand the matrix-

dominated behaviour and the nature of matrix damage initiation at the micro-scale, thus assisting in 

the formulation of reliable criteria for matrix cracking. Experimental evidences [3-7] support the idea 

that under static and fatigue tensile loading the failure of the epoxy matrix is brittle, and damage in 

fibre reinforced epoxy off-axis plies was observed to initiate as micro-cracks between the fibres with 

an orientation normal to the local principal stress direction [7].  

Differently, in the presence of a pure transverse tension or negligible local shear stresses, the local 

stress state at or close to the fibre–matrix interface is nearly hydrostatic [6,8]. Under such conditions, 

failure initiation was observed to occur in the form of matrix cavitation and consequent brittle cracking 

at the fibre–matrix interface.  

These opposite behaviours suggest the use of a bi-parametric failure criterion to assess the onset of 

matrix cracks, according to which the Local Maximum Principal Stress (LMPS) should be used as 

effective strength parameter for loading conditions far enough from the pure transverse tension, where, 

instead, the Local Hydrostatic Stress (LHS) has to be used as representative of the driving force for 

damage evolution in the matrix [6]. 

Moving to the fibre/matrix debonding mechanism, interface investigation has been an important 

research field since the early days of fibre composites.  
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Several fracture criteria were proposed in the literature to predict the initiation of a debond crack, 

which can be effectively gathered into three main groups: 

i) stress-based criteria; 

ii) Cohesive Zone Models (CZMs); 

iii) Finite Fracture Mechanics (FFM) based models. 

Stress-based criteria are the most simple to implement and use and, for this reason, quite diffused. The 

major drawback of these criteria is that they are, by nature, not capable to account for the scale effect, 

meant as the influence of the fibre radius on the debonding process. 

CZMs, frequently implemented in Finite Element codes, are based on the combined use of stress and 

energy criteria to govern the element separation in the numerical analysis. As a consequence, different 

from the stress based criteria, these methods are able to account for the influence of the fibre radius on 

the stress required for debond initiation.  

The criteria related to the third group are based on the FFM approach, introduced by Leguillon [9], 

according to which two conditions (a stress criterion and an energy criterion) have to be 

simultaneously satisfied for the initiation of a crack. Mantič et al. [10] formulated a criterion for 

debond initiation for a fibre embedded in an infinite plate under remote transverse tension. According 

to this criterion the debonding stress depends on the interface strength, toughness and on the fibre 

radius. Later Mantič and Garcia [11] extended this approach to the case of biaxial transverse tension, 

thus introducing the effect of a through-the-thickness load in a composite laminate. Carraro and 

Quaresimin [12] adopted the FFM approach to formulate a criterion for debond initiation under a 

loading condition characterised by the presence of remote transverse and anti-plane shear stress, the 

latter corresponding to the in-plane shear stress for a composite ply. The model resulted in good 

agreement with the experimental data reported by Ogihara and Koyanagi [13]. 

The aim of the present work is to present a thorough analysis of the micro-scale interfibre failure in 

fibre reinforced composites. To this end, the competing phenomena of interface debonding and matrix 

failure are considered, highlighting the parameters which allow the actual damage scenario to be 

predicted.  

 

2. Prediction of fibre/matrix debonding 

 

2.1 A FFM-based model for fibre/matrix debonding 

 

In the presence of a stress gradient, the FFM approach states that the failure of a solid under a (critical) 

remote stress level σc does not occur at a point but involves the sudden nucleation of a crack of finite 

length a0, provided that the following two conditions are simultaneously satisfied [9]: 

   0σ σ , σc Ra            (1.1) 

   0Δ σ , c cG a G           (1.2) 

Briefly: 

 Eq. (1.1) represents a stress condition, according to which failure occurs whenever the stress 

over the length a0 at least equates the material strength, σR; 

 Eq. (1.2), instead, is the energy criterion, according to which the solid rupture occurs 

whenever the finite energy release rate ΔG reaches the critical energy release rate Gc. In other 

words, Eq. (1.2) requires that the released energy is equal to or larger than the energy barrier 

for the formation of two new fracture surfaces.  

The two unknowns of the problem are the critical remote stress σc and the crack length a0, which can 

be estimated by solving, in combination, Eq. (1.1) and Eq. (1.2).  

With regard to the problem of the debonding of an isotropic fibre under a bi-axial stress state 

characterised by the presence of the remote transverse and anti-plane shear stresses, σ2 and σ6 (see 

Figure 1), Eq. (1) can be conveniently reformulated as it follows [12] (considering a unit thickness 

plate): 

         2 2 2
eq 0 r 0 rθ 0 rz 0 Rσ α σ α c τ α τ α σ                     (2.1) 
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   tot 0 0 f cΔU α 2α R G                    (2.2) 

where: 

 2α0 is the finite debonding crack angle;  

 σr, σrθ and σrz are the stress components in the undamaged state, as evaluated at r = Rf and θ = 

α0 (see also figure 1); 

 c is a multiaxiality parameter which represents the square of the ratio between the normal and 

shear interface strength; 

 σR is the interface strength;  

 ΔUtot is the released energy;  

 Gc is the critical interfacial energy release rate, which is regarded as a material property, 

independently of the mode mixity (see ref. [12] for a comprehensive discussion on this topic). 

 

 

Figure 1. Fibre embedded in an infinite plate with a) pristine and b) partially debonded interface 

 

 

In more explicit terms, Eqs. (2) can be re-written as it follows [30]: 

  

 
R

2
2 2 2 2

rr 0 rθ 0 12 rz 0

σ
σ

k (α ) c k (α ) λ k (α )


  
                (3.1) 

  
      

c 0
2 2

f p 1 0 2 0 12 a 3 0

G 2α
σ

R Ω I α I α λ Ω I α
 

      
               (3.2) 

where kij are the stress concentration factors around the fiber in the undamaged state [12] and λ12 is the 

anti-plane shear stress to the transverse stress ratio, λ12=σ6/σ2. Instead, parameters Ij and Ωj strictly 

depend on the relative crack opening and sliding displacements of a debond crack of angle 2α as well 

as on the stress fields in the undetached condition [12].  

Thanks to Eqs. (3) the following relevant expression can be derived, of which the solution gives the 

initial crack angle α0: 

      

 

2
p 1 0 2 0 12 a 3 0

0

2 2 2 2
rr 0 rθ 0 12 rz 0

1
Ω I α I α λ Ω I α

2α
Γ

k (α ) c k (α ) λ k (α )

      


  
      (4) 

where Γ is an interface parameter defined as: 

c

2
f R

G1
Γ

R σ
            (5) 

Once α0 is known from Eq. (4), the critical remote stress for debond initiation can be assessed either 

by Eq. (3.1) or (3.2). It is evident that the critical debonding stress strictly depends on:  

 the interfacial strength σR; 

 the interfacial toughness Gc; 
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 the fibre radius Rf; 

 the biaxiality ratio λ12.  

 

2.2 Asymptotic behaviours for the critical debonding stress  

 

As Γ vanishes, namely in the presence of large fibre radius and/or low values of the Gc/σR
2 ratio, the 

initial angle α0 in Eqs. (3) tends to zero [12]. This corresponds to the physical situation where the 

initiation of a debond crack is fully controlled by the peak stress at the fibre pole. Under this condition, 

the critical stress can be assessed by the following equation: 

 2
rz,6

2
12

2
r,2

2
rr,2

R
c2

kkck 






        (6) 

where the stress concentration factors ki,km relate the local stress σkm at the fibre pole to the far applied 

stress σi.  

Accordingly, introducing the following equivalent stress concentration factor keq: 

2 2 2

eq 2,rr 12 6,rzk k c λ k             (7) 

Eq. (6) can be re-written in the following form: 

1k
R

c2
eq 



           (8) 

Eq. (8) represents the lower bound for the critical stress.  

Suppose now to consider the case c=0 and Γ tending to infinity, which corresponds to the physical 

situation of small fibre radii  and/or large Gc/σR
2 ratios. Under these conditions, α0 tends to the angle θ0 

for which the radial stress at the interface goes to zero [12]. Under these circumstances the initiation of 

a debond crack is fully controlled by the energy released during the process, ΔUtot, and the critical 

stress can be assessed by the following equation (see Eq. 3.2): 

  )(I)(I)(I

2
kk

03a
2
120201p

0
eq

R

c2
eq









     (9)

 

The condition c=0 suffices to identify the asymptotic behaviour for the critical debonding stress for 

any value of c.  

The resistance to fibre/matrix debonding is alternatively stress or energy-controlled, depending on 

whether the stress or the energy criterion provides the higher solution for the critical stress. Comparing 

Eq. (8) and Eq. (9), it is evident that, while Eq. (8) is independent of the fibre radius, Eq. (9) possesses 

a square root dependence on 1/Rf. Accordingly, the two solutions intersect for a particular value of Rf, 

easy to be obtained equating the right-end side of Eqs. (8) and (9): 

 
      

2

0 eq* c
f 2 2

R p 1 0 2 0 12 a 3 0

2 θ kG
R

σ Ω I θ I θ λ Ω I θ

 
 

      

       (10) 

*
fR  is the fibre radius providing the transition from an energy- to a stress-controlled behaviour.    

From Eq. (10) it is evident that *
fR depends on: 

 the actual value of the stress concentration at the fibre pole, keq, as evaluated from Eq. (14);  

 the interface strength, σR;  

 the critical interfacial energy release rate, Gc 

 the constituent elastic properties, through angle θ0 and parameters Ij and Ωj.  

Substituting Eq. (20) into Eq. (18) one obtains: 

f

*
f

R

c2
eq

R

R
k 




          (11) 

Eq. (11) represents the asymptote of the critical debonding stress for large values of Γ. 
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A gradual transition between the two asymptotes can be obtained from the following simple equation:  

4

2

f

*
f

R

c2
eq 1

R

R
k 


















         (12) 

Eq.(12), which are valid independently of the material properties, interface strength and toughness and 

loading condition and do not require the numerical solution of Eq. (4) for the calculation of α0, are 

compared to the complete solution from Eq. (3) in Figure 2, where a very satisfactory agreement can 

be noted. 

0.1

1

10

100

0.001 0.01 0.1 1 10 100

k
eq

·σ
2

c/
σ

R

Rf/Rf*

asymptotes

Eq. (12)

FFM (c=0)

FFM (c=1)

Strength driven 

debonding

Energy driven 

debonding

 

Figure 2. Asymptotic and simplified solutions compared to the FFM results for c = 0 and c = 1. 

 

 

3.  From interfacial debonding to matrix failure: upper limit for small values of the fibre radius 

 

When the fibre radius Rf is much smaller than Rf* and tends to zero, the solution for the critical 

debonding stress, Eq. (12), tends to an infinite σ2 stress. This result is trivially wrong and is due to the 

fact that, reducing the fibre radius, the failure mode changes from interface failure to matrix failure. 

As debated in the introduction, the initiation of matrix cracks is a very complex phenomenon to be 

described.  

In particular, investigations in the literature suggest the use of a bi-parametric failure criterion to 

assess the onset of matrix cracks, according to which the Local Maximum Principal Stress (LMPS) 

should be used as effective strength parameter for loading conditions far enough from the pure 

transverse tension where, instead, Local Hydrostatic Stress (LHS) has to be used as representative 

parameter of the driving force for damage initiation and evolution in the matrix [6]. Notwithstanding 

this, in both cases the most critical point is the fibre pole, where the local stress state reads as: 

2,rrrr

2,θθθθ

2,zz 2zz

6rθ

θz

2,rzrz

k 0σ

k 0σ

k 0 σσ

0 0 σσ

0 0σ

0 kσ

  
  
  
     

     
    
  
  

      

         (13) 

Accordingly, the local hydrostatic stress and the local maximum principal stress at the fibre pole, 

thought of as parameters governing matrix failure, can be written as: 

2,rr 2,θθ 2,zz

2

k k k
LHS σ

3

 
                       (14) 

2 2 2 22
2,rr 2,zz 2,rr 12 6,rz 2,rr 2,zz 2,zz

σ
LMPS k k k 4 λ k 2k k k

2
         
  

.              (15) 

respectively.  
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Matrix failure occurs when the following expression is verified by the remote stress: 

R

m2
eq

R

c2
eq kk









          (16) 

where: 

 LMPS,2LHS,2m2 ,min           (17) 

and: 

R
2,LHS

R 2,rr 2, 2,zz

R
2,LMPS

2 2 2 2
R 2,rr 2,zz 2,rr 12 6,rz 2,rr 2,zz 2,zz

3 LHS 1

k k k

2 LMPS 1

k k k 4 k 2k k k




  

  


  

      

   (18) 

In other words, interface debonding and matrix failure are competing mechanisms, the latter occurring 

if the fibre radius is smaller than a limit value, Rf0, to be determined equating Eq. (16) to Eq. (12): 
2

m2eq

R*
f0f

k
RR


















          (19) 

Rf0 corresponds to the transition point between an interface-dominated and a matrix-dominated 

behaviour. It is evident that 0fR strictly depends on the matrix strength, LMPSR or LHSR. 

Accordingly, a comprehensive diagram can be drawn (Figure 3a) able to bridge the transition from one 

behaviour to the other. In particular, with reference to the schematic in Figure 3a, three distinct 

scenarios can be defined: 

1. Region I, for fibre radii smaller than Rf0 the most critical condition is the matrix strength, so 

that the apparent strength σ2c is limited by σ2m; 

2. Region II, for fibre radii comprised between Rf0 and *
fR , where the dominant failure 

mechanism is debonding. In this zone, the occurrence of debonding is conditioned by the 

interface fracture toughness (energy controlled mechanism); 

3. Region III, for fibre radii larger than *
fR , where the dominant failure mechanism is still 

debonding but, in this case, its occurrence depends on the interfacial strength (strength  

controlled mechanism). 

It is important to note that, as mentioned in the previous section, in regions 2 and 3 conservative 

predictions for σ2c are obtained using the asymptotes given by Eqs. (22). Differently, the use of 

asymptotic conditions to move from zone 1 and 2 will result in non-conservative estimation of the 

actual apparent strength, σ2c. A safer and smooth transition between zone 1 and zone 2 can be 

achieved, instead, by means of the following equation: 
2/1

*
f

0ff

R

c2
eq

R

RR
k















 





         (20) 

It is useful to underline that Eq. (20) is valid only in the close neighborhood of Rf0.  

 

4. Application and discussion 

 

Consider the glass fibre/epoxy system adopted by Ogihara and Koyanagi [13], characterised by the 

following elastic properties: 

Ef = 72000 MPa νf = 0.22 

Em = 4280 MPa  νm = 0.42 

For this material, the fibre radius Rf was equal to 0.0085 mm, whereas the interface strength and 

toughness were estimated by Carraro and Quaresimin [12] taking advantage of the FFM criterion:  

 σR = 7.5 MPa  Gc = 0.75 J/m2  

As far as the matrix strength is concerned the following typical values can be regarded as valid [8,12]: 
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LHSR=46 MPa   LMPSR=70 MPa 

In Ref. [13] several values for λ12 were considered. Using the relevant geometric and material data, it 

was possible to draw the comprehensive diagram introduced in the previous section for this material 

system, showing  a very satisfactory agreement with experimental data (figure 3b). It is evident that, 

for all the conditions, the dominant failure mechanism is energy-controlled fibre/matrix debonding.  

 

 

1 
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*
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k
eq

·σ
2
,c
/σ

R
Rf / Rf*
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FFM
Eq. (12)

asymptotes

 
Figure 3. a) Schematic of normalised critical remote stress trend against the normalised fibre radius 

and b) comparison to experimental data from [13] 

 

It is worth of being underlined that this conclusion has not a general validity, but it depends on the 

interfacial strength properties and on the local stress state close to the fibre. As an example, suppose to 

consider the same material as before, leaving unchanged all material parameters except for the 

interface toughness, Gc, which is chosen now to be equal to 10 J/m2, as in the case of fibres treated by 

a coupling agent in the sizing by Zhang et al. [14]. As a consequence, one obtains: 
*
fR =1.26 mm  0fR =0.021 mm  

for λ12 = 0,  
*
fR =0.20 mm  0fR =0.029 mm  

for λ12 = 2 and c=0, and 
*
fR =1.658 mm 0fR =0.029 mm  

for λ12 = 2 and c=1. 

It is evident that for all cases the fibre radius, Rf=0.0085 mm, is lower than Rf0, so that the dominant 

failure mechanism is matrix failure. 

 

5. Conclusions 

  

A comprehensive analysis of the micro-scale interfibre failure in fibre reinforced composites was 

presented. It was underlined that interfacial debonding and matrix failure are competing damage 

mechanisms and the parameters which allow the actual damage scenario to be predicted were 

highlighted. Based on the results obtained, the following relevant conclusions can be drawn: 

 for very small values of the fibre radius, less than a specific limit value Rf0, the interfiber 

failure is a matrix driven phenomenon. Beyond Rf0, a transition to an interface-driven failure is 

present; 

 the existence of a second limit value, Rf
*, larger than Rf0, was noted, which allows one to 

distinguish whether the fibre/matrix debonding is a stress-driven or an energy-driven interface 

process.  
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