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Abstract

The recycling process chain of carbon fiber reinforced polymers (CFRP) recycling consists of the prepa-
ration of the recyclables, the fiber-matrix separation, the textile processing of the recycled carbon fibers
(rCF) and the re-infiltration of the rCF-semi-finished product. In the present study, the separation step
is investigated since it has major impact on the mechanical properties, surface properties and the pro-
cessability of the rCF as well as on the energy balance of the CF recycling process. The investigated
separation process is based on the solvolysis of a thermoset matrix material by two different sub- and
supercritical fluids (SCF). Pure water and a water/ethanol-mixture are used as solvents. Treatment time
and temperature, which have major impact on the efficiency of the process, were varied. The rCF were
examined by Scanning-Electron-Microscopy (SEM) and Atomic-Force-Microscopy (AFM) for matrix
residues and possible degradations of the fiber surfaces. The chemical composition of the rCF surfaces
is characterized via X-ray-Photoelectron-Spectroscopy (XPS) and compared to an electrochemically ox-
idized unsized virgin carbon fiber (vCF). The mechanical properties of the rCF were characterized via
single-fiber-tensile-tests. The study shows that the rCF properties depend on the solvent composition and
treatment conditions. For optimized parameters rCF with properties comparable to vCF were obtained.

1. Introduction

Lightweight construction is a key technology for the sustainable use of resources within the field of
passenger and goods transportation (e.g. automotive, aerospace) and renewable energies (e.g. wind
turbines). CFRP are suitable for this purpose because they are lightweight and simultaneously show high
tenacity and high modulus caused by the reinforcing properties of the CF. High material and processing
costs as well as the absence of ecological and economical viable recycling processes hinder the large
scale application of CFRP. Regarding the conservation of resources and the currently rising market trend
of CFRP applications it is necessary to create a sustainable and closed life cycle for these materials
containing a value preserving recycling process. Solvolysis offers a large field of applications due to
the possibility to vary the solvents, the temperature, the pressure and the dissolving power by adding
different catalysts. This aspect also depicts a possible disadvantage of the recycling via solvolysis which
arises from the high selectivity for the type of bond which is breakable by the solvents and their inherent
properties [1]. This study presents a chemical recycling process with sub- and supercritical water and a
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mixture of water and ethanol. It can be seen that the supercritical solvolysis is a promising method to
create an efficient fiber-matrix separation process. Main advantages of supercritical fluids are the low
viscosity which contributes to a high mass transport coefficient combined with a high diffusivity. The
dissolving power of the SCF is pressure dependent [2]. Additionally, solvolysis with supercritical water
is promising because it has economical and ecological advantages over other processes and is easy to
handle [3, 4]. Another advantage related to the energy- and cost-efficiency is the possibility to regain
the solvent fluids after the separation process and reuse it for subsequent recycling processes [5]. One
specific characteristic of supercritical water is its ability to support ionic, polar non-ionic and also free-
radical reactions due to the higher ion product at higher temperatures coupled with a lower dielectric
constant [6]. The recycling via supercritical water has been studied for several years for example by
Okajima et al. [7], Pifiero-Hernanz et al. [8] and Liu et al. [9]. Supercritical alcohols for solvolysis
are used by Jiang et al. [10] and Pifiero-Hernanz [11]. All of these studies offer rCF with mechanical
as well as surface properties comparable to vCE. As the SCF process is highly adjustable in terms of
selectivity, there might be the option to regain rCF with chemical surface composition even comparable
to vCF which have undergone an additional surface activation treatment by an electrochemical oxidation.
For that reason, in this study the chemical composition of the rCF surfaces is compared to that of both,
desized vCF and unsized electrochemically oxidized vCF.

2. Materials and Methods
2.1. Carbon fiber reinforced composite (CFRP) - material

The samples used for the recycling via sub- and supercritical fluids consist of twelve plies of plain weave
fabric layers of Hexcel 48192 C 1270 ST sized carbon fibers [12] infiltrated via the vacuum assisted
resin infusion (VARI) process. The thermoset matrix material is a tetra-functional epoxy resin named
HexFlow®RTMS6 [13]. Starting material consists of the resin and the hardeners 4,4’-methylenebis(2-
isopropyl-6-methylaniline) and 4,4’ -methylenebis(2,6-diethylaniline). The curing cycle was executed as
specified in the data sheet [13] of the matrix material. The CFRP-samples were cut into 20 mm x 50
mm plates limited by the dimensions of the continuous flow-reactor used. Reference specimen for the
performed investigations are thermally desized vCF. A temperature treatment of 1100°C for 1 h under
a constant nitrogen flow was chosen for removing the sizing agent from the fiber surface. The second
reference fiber is an electrochemical oxidized unsized vCF from the standard industrial process of anodic
oxidation.

2.2. Experimental setup and conditions

The fiber matrix separation process was executed in a continuous flow-reactor based on the presented
principle of Morin et al. [3]. A continuous flow of the fluid is important to prevent the dissolved resin
from a re-condensation on the CF after leaving the sub- or supercritical conditions at the end of the
separation process. For the presented investigation eight experiments with different process parameters
were conducted. The pressure (25 MPa) was the same for all experiments. To gain information about
the temperature dependence of the process, three different temperatures (350°C, 375°C and 400°C) were
used. The influence of the treatment time was studied using two different treatment durations (60 min
and 120 min) at constant temperatures for two different fluids, i.e. water and a mixture of water and
ethanol (50% volume mixture).
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2.3. Examination of the recycled carbon fiber surface properties

Scanning-Electron-Microscopy was used to check the effectiveness of resin removal. SEM micrographs
of the reference vCF and all rCF were taken using a LEO DSM982 GEMINI. The fiber samples were
fixed on a twin sided carbon tape and coated with a thin Au film. The SE-Inlens mode and a 1 kV acceler-
ation voltage was selected to obtain the images. For a more detailed investigation of the influence of the
solvolysis process on the rCF surfaces AFM measurements were conducted. Roughness measurement
on the length scale of the fibrils can be used as an indicator for possible surface contamination and degra-
dation. The AFM measurements (Dimension Icon®(Bruker)) were performed in tapping mode using a
measuring tip with a tip radius of about 8 nm. For each investigated fiber sample three different fibers
were measured at three different positions. Scan direction for the (5 x 5) um sized micrographs was per-
pendicular to fiber axis with a scan rate of 0.5 Hz. For the mathematical evaluation of the fibril-roughness
Matlab®R2012b was used to subtract a background from the raw data according to [14]. XPS-analysis
shows the influence of the separation process on the surface functionality of the rCF surfaces. The XPS
measurements were executed applying monochromatic Al-x-ray radiation (1486.7 eV). The photoelec-
trons were collected by an Omicron EA125 electron analyzer. To determine the elemental composition
of the fiber surface a scale was taken over a binding energy range of 1386.7 eV to 0 eV with an applied
pass energy of 50 eV and a step width of 0.5 eV. To identify the functional groups on the fiber surface
a high-resolution scan of the Cls spectrum was taken over an energy range of 280 eV - 300 eV. The
applied pass energy was 17 eV with a step width of 0.05 eV. For a quantitative analysis of the functional
groups on the fiber surface the Cls spectra were fitted using Pseudo-Voigt shaped lines and a Shirley
type background [15-17]. We chose the following energy ranges for the respective functional groups:
C-Cauromatic: 284.4 €V - 285.0 eV; C-Cyipharic: 285.0 eV; C-OR: 286.0 eV - 286.6 eV; C=0: 287.4 eV -
288.1 eV; COOR: 288.6 eV - 289.4 eV, satellite peak (7 — 7).

2.4. Examination of the recycled carbon fiber mechanical properties

The mechanical properties of the rCF were investigated by single-fiber-tensile-tests. For each sample
twenty measurements were taken on a Favimat+ (Textechno). The diameter of each measured fiber was
determined via an acoustic stimulated oscillation (ASTM D 1577) of the fibers to get the fiber coarseness
known as the titre of the CF. From the titre and the fiber density the diameter of each measured CF was
estimated under the assumption of a circular cross section. The tensile tests, starting with a pretension of
1.0 cN/tex, were performed with a constant displacement rate of 0.5 mm/min. To determine the tensile
modulus the range of 0.25% - 0.5% elongation was used.

3. Results and Discussion

Figure 1 shows a picture of the rCF after the separation process. The textile structure of the plain weave
fabric is maintained during the process which is different to some other recycling techniques resulting in
an unordered hairball-like fiber structure (cf.[8, 9, 18]).

Figure 1. Recycled carbon fibers after the fiber-matrix separation process.
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3.1. Influence of the experimental conditions on the rCF surface properties

Figure 2 a) - ¢) shows the SEM pictures of the separated rCF using water for different treatment temper-
atures. It can be seen that most of the resin could be removed for all solvolysis parameters applied, but
even at the highest temperature and for the longest treatment time some resin particles still remain on the
rCF surfaces. For the water/ethanol mixture treatment (Figure 2 d) - f) ) a similar behavior is observed,
although an improvement of the resin removal occurs for all temperatures and treatment times. For both
fluids an increased temperature and treatment time results in a more complete removal of matrix material.

(b) 375°C (c) 400°C

(d) 350°C (e) 375°C (f) 400°C

Figure 2. SEM pictures of rCF using water (a - ¢) and a water/ethanol mixture (d - f) as solvent and
different treatment temperatures for 120 min.

Possible surface degradations of the rCF surfaces were examined by AFM measurements. Figure 3 shows
the topography of the desized vCF and of the rCF, each separated by the two different fluids at 375°C
and 25 MPa for 120 min. The measured values and the corresponding standard deviations for the fibril-
roughness of the rCF and desized vCF are depicted in Figure 4. For both media, the fibril-roughness
tends to be lower for the rCF than for the desized vCF. With increasing treatment time and treatment
temperature the measured fibril-roughness decreases. We attribute the decrease of the fibril-roughness
for the rCF compared to the vCF to a smoothening of the plain CF surface, while the decrease of the
roughness with increasing treatment time and temperature is attributed to a more complete removal
of the matrix. The latter interpretation is in accordance with the SEM images. For the water/ethanol
treated carbon fibers (Figure 4 b)) the results for the fibril-roughness are also in good agreement with the
SEM images. The effectiveness of the resin removal of the water/ethanol mixture is comparable to this
of water at higher temperatures and for long treatment time. Consequently the fiber-matrix separation
process by the method described allows for an almost complete removal of the matrix material from the
fiber surfaces without major surface degradations.
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Figure 3. Topography of the desized vCF compared to separated rCF.
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Figure 4. Fibril-roughness of the recycled carbon fibers compared to virgin desized carbon fibers.

3.2. Influence of the experimental conditions on the chemical composition of the rCF surfaces

In Figure 5 the relative concentration of carbon (C), oxygen (O) and nitrogen (N) on the rCF surfaces
is compared to that of the desized vCF and an electrochemically oxidized fiber. Carbon and oxygen
were detected on all surfaces. Nitrogen was detected on all fiber surfaces except for those treated by
water/ethanol at 350°C for 120 min and 375°C for 60 min. The oxygen content for all rCF is lower than
for the thermally desized fibers. The rCF show a higher nitrogen concentration than the desized vCF
except for two treatment conditions. We attribute the increased nitrogen concentration to resin residues
on the rCF. This interpretation is confirmed by the SEM images as well as the AFM-analysis. With regard
to further processing of the rCF it is a promising fact that the elemental composition of almost all rCF
is remarkably similar to that of electrochemically oxidized fibers. The results of the fitting procedure
are depicted in Figure 6. C-C* represents both aromatic and aliphatic C-C bonds. The composition of
functional groups of all rCF is similar to those of thermally desized and electrochemically oxidized vCF.
The only significant difference is the higher amount of COOR-groups on the electrochemically oxidized
fiber surface.
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Figure 5. Elemental composition on the rCF-
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Figure 6. Functional groups on the rCF-, vCF- and electrochemically oxidized CF-surfaces.

3.3. Influence of the experimental conditions on the mechanical properties of the rCF

Another important point for an evaluation of the separation process is its influence on the mechanical
properties of the rCF. Table 1 shows the results for the measured diameter, the tensile modulus and
the tensile strength of the rCF compared to those of the desized vCF. Within the standard deviation no
influence of the separation process on the specific values of the rCF compared to the desized vCF can be
identified. Some fluctuation of the tensile strength as function of the treatment parameters is observed.
It is not clear whether this is a real effect caused by the different treatment conditions. Therefore, it
can be said that the fiber-matrix separation process conducted with the denoted parameters preserves the
mechanical properties of the rCF to the greatest possible extent.

4. Conclusion

The presented fiber-matrix separation process provides recycled carbon fiber surfaces nearly free from
resin residues and without major surface degradation. Moreover, the chemical composition of the rCF
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Table 1. Diameter, Tensile modulus and Tensile strength of the rCF compared to desized vCF.

Experiment Diameter [um] Tensile modulus [GPa] Tensile strength [GPa]

H,O H,0/C,HcO H,O H,0/C,HcO H,O H,0/C,HcO

desized vCF 6,59 £ 0,25 220+ 6 3,95+ 1,29

350°C, 60 min - 6,68 £ 0,19 - 216 £5 - 4,55 £ 1,06
350°C, 120 min 6,95 £ 0,40 6,79 +0,25 206+ 10 213+ 6 3,14+ 0,54 431=+1,57
375°C, 60 min - 6,80 + 0,29 - 209 £ 6 - 4,71 £ 1,05

375°C, 120 min 6,63 +0,16 7,02+0,32 215+4 207 £ 7 5,16 +1,09 4,66 + 1,22
400°C, 120 min 6,77 £0,39 6,73 +0,25 210+9 209 +£5 3,64 +£1,02 4,05+0,88

surface is comparable to that of an electrochemically oxidized carbon fiber. This suggests that a further
oxidizing surface treatment after this recycling process might be not necessary. This may contribute,
beside the use of water as an inexpensive and easy to handle fluid as solvent, to an economical and
ecological advantage of this recycling process. Furthermore, the mechanical properties of the rCF are
comparable to these of the vCF and the textile structure can be maintained during the fiber-matrix sep-
aration process. This opens the possibility for a more effective reuse of the rCF in CFRP structures of
second generation with enhanced mechanical properties.
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