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Abstract
This paper presents a novel sequence of computational methodologies to efficiently quantify the variabil-
ity in mechanical properties of composites remanufactured from recycled/recovered fibres. This model
is broken up into three steps. Firstly, we describe a method for generating realistic random fibre archi-
tectures using random walks. This stochastic model is parameterised by distributions for fibre length,
fibre radius and stiffness; whilst the random fibre paths are driven by a multivariate von Mises-Fisher
distribution, which controls anisotropy and local fibre bending. Secondly, we describe a 3D rebar finite
element for random fibres along with the homogenisation procedures required to compute macroscale
stiffness properties for a given random fibre realisation. The third and final step details a novel multilevel
Monte Carlo (MLMC) methodology, a way of combining a hierarchy of model resolutions, to efficiently
calculate the distribution of the macro properties desired. Numerical experiments, parameterised by real
data from a fibre recover processes (Mechanical Grinding) demonstrate the potential of the methods de-
scribed. In particular MLMC demonstrates gains of as much as 15-fold computational speed-up over
standard Monte Carlos methods. Importantly such efficient methods allow better prediction of perfor-
mance and encourage the use of recycled fibres back into new composites.

1. Introduction

Thermoset composites of polyester resin combined with short, randomly orientated fibres are extensively
used for high volume, lower cost applications such as sheet moulding compounds (SMC). The increasing
cost of landfill and environmental impact means there is an ever increasing pressure to recycle composites
[1,2].Several technologies (e.g. Mechanical Grinding [3], High Voltage Fragmentation [3], solvolysis[4])
have been developed for recovery of fibre fractions yet low material quality [3] and prohibitively large
recovery costs remain obstacles for significant commercial uptake [1,2]. If such materials are to be reused
in advanced applications, an important step is to understand and control variability in their mechanical
properties.

The variability in performance of recycled fibres has largely been characterized experimentally in terms
of macro stiffness and strength, reinforcement architecture , local fibre and interfacial properties[1].
However, there is little modelling which focuses on the stochastic nature of the recycled short, discon-
tinuous, fibre architectures, their remanufacturing as a SMC and the relation to macroscale properties. A
recent set of experimental study which compared mechanical properties of SMCs made with recovered
glass fibres from two different recycling processes (Mechanical Grinding and HV Fragmentation). The
results shows that the recovered fibre length distribution (Fig.1 (left)) had a non-trivial link to flexural
stiffness Fig. 1 (right). This is particularly highlighted when the flexural stiffness was estimated for
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Figure 1. (Left) Fibre length distribution from two fibre recovery processes. (Right) Flexural stiffness
of SMC with different length fibres/ fibre distributions.

SMCs made from virgin fibres with artificially generate length distributions, as shown in Fig. 1 (right).
In particularly we note that even though the fibre volume fraction for each composite is the same, SMC
with 6mmfibres demonstrate a statistically significant higher stiffness than SMCs made with longer fi-
bres (e.g. 25mm). This demonstrates that estimating the macroscale properties is more complex than
a simply rule of mixtures. This experimental work has motivated the modelling question ‘What steps
are required to model recycled composites to access the functional relationship between the stochastic
distribution of random inputs of the recovered fibres (such as fibre length, stiffness and an isotropy) and
the SMC resin with the their macroscale properties?’ In this paper we make the initial modelling steps
to answer this question.

Classical methods for investigating uncertainty consider how variability in inputs propagate through a
model by simply averaging the output of many independent samples (Monte Carlo). For many appli-
cations a single realisation is expensive, yet many samples are required due to possible number of fibre
configurations; making standard algorithms computationally expensive. Here we implement a Multilevel
Monte Carlo (MLMC) method to achieve efficient estimation of macro properties of recycled compos-
ites. The MLMC method was first suggested in the context of option pricing in financial mathematics
[6]. MLMC’s huge potential in uncertainty quantification for engineering applications was identified by
Cliffe et al.[5] in particular for subsurface hydrology applications. Since then, it has been applied to
other applications, including random defects in aerospace composites [7], and has also been extended to
account for experimental data within a Bayesian setting [8]. The method achieves large speed-ups by
combining a hierarchy of model fidelities, so that only a few costly fine scale computations are needed
to accurately estimate the distribution of macro-scale properties.

The model in this paper requires three steps. Firstly, we need to develop a method to generate realistic
representative volume elements (RVE) of the random fibre architecture from experimental data on fibre
length distribution, orientation and fibre quality. For each realisation, the centre-line of cylindrical fibres
are described by Markov processes driven by a von Mises-Fisher (vMF) distribution with parameters
that control the average fibre direction and fibre bending stiffness. Variability in the SMC resin/paste
arising through porosity defects are introduced to the model using correlated random fields. Secondly, a
hierarchy of finite element modes of the RVE are constructed, for which the random fibres are models
are stiff rebar inclusions. For each realisation, on any grid resolution, computational homogenization is
applied to compute effective macro properties for each sample. Finally the MLMC algorithm combines
many coarse solutions with fewer detailed, in an optimal ratio, to obtain robust estimates and bounds
for the mechanical properties. After detailing the methods, and giving a general introduction to the
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stochastic methods (in particular MLMC), the paper concludes with a number of numerical experiments,
which we demonstrates the methodology with random inputs parameterised from measured data from
two recycling processes (Mechanical Grinding and HV Fragmentation). Finally we point to future steps
to validate the methodologies for practical (structural) applications for recycled composites.

2. Modelling Recycling Composites

In this section we first describe how we generate random fibre architectures on a periodic cubeΩ :=
[0, L]3, followed by a brief description of the finite element procedure used to model the random fibre
composite.

2.1. Generating random fibre architectures and porosity defects

The aim is to generate realistic random fibre architectures on a periodic cubeΩ := [0, L]3 made up
of fibres with a length distribution of those measured from the recycling processes Fig. 1. This paper
parameterises random fibre lengths by a Gamma distribution,` ∼ Γ(k, θ) with meanE[`] = kθ and
varianceV[`] = kθ2. However in general any distribution could be used. Assuming each fibre has a
radiusr f and therefore an average volume1

2πr
2
fE[`], to achieve a target fibre volume fraction ofVf we

generateN = 2L3Vf /πr fE[`].

To generate thejth fibre, we firstly sample a random length` j from Γ(k, θ). The position of the fibre is
then described by a set ofMj = d` j/Δ`e discrete points inR3, X( j) = {x( j)

0 , x
( j)
1 , . . . , x

( j)
Mj
}, whereΔ` is

the distance (inR3) between consecutive points. Randomly positioning the first pointx( j)
0 in Ω using a

uniform distribution for each component on [0, L], subsequent points in the fibre are generated by the
Markov process,x( j)

i+1 = x( j)
i + Δ` μ( j)

i
. Here the random directional vectorμ( j)

i
is generated from a

multi-variant von-Mises Fisher (VMF) distribution with a probability density function

fp(μ; κ, μ∗) =
κ

4π sinhκ
exp(κμ∗Tμ), whereκ = |κ1μ1 + κ2μ2| and μ∗ =

κ1μ1 + κ2μ2

κ
. (1)

The parametersμ∗ ∈ R3 andκ ∈ R+\{0} define themean directionandconcentration factorrespectively,
so that the greater the value ofκ the more concentrated the samples are on the mean directionμ∗, as
demonstrated in Fig 2 . In this paperμ∗ andκ are the weighted average of two ‘mean’ directions (μ

1
and

μ
2
) and associated concentrations factorsκ1 andκ2. For generating the random fibre we setμ

1
to be the

expected direction of the overall laminate (e.g. for uni-directional laminatesμ1 = [1,0,0]T) whilst μ
2

is

set equal to the direction at the previous point i.e.μ( j)
i−1

. Therefore the concentration factorκ1 controls
how well aligned the fibres are with a prescribed direction, whilstκ2 controls the level of fibre deviation
(or bending). Figure 2 (left) shows random fibre architectures with different a concentration factors and
μ

1
= [1,0,0]T .

Spatial variability random porosity are introduce into the SMC resin using a truncated Karhunen-Loeve
(K-L) expansion to define the functionι(x) =

∑∞
i=1

√
λiξ

(k)
i fi(x). Here{ξi} is a set of Gaussian random

variables such thatξi ∼ N(0, σkl); and{(λi , fi)} is the set of eigenvalue/function pairs of the exponential
covariance functionC(x, y) = exp(|x−y|/`kl) where`kl ∈ R+ defines thecorrelation lengthof the porosity
defects. The Young’s modulus of the resin is set so that

Er (x) = 0 if ι(x) < −βσkl else Er (x) = E[Er ] +
σr

σkl
ι(x), (2)

whereσkl =

√∑N
i=1 λi . To achieve on average 1% porosity defects we setβ = 1.96 (one-sided confidence

interval). Figure 2 (right) shows typical porosity defect (with a higher % than normal) generated by the
K-L modes.
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Figure 2. (Left) Three random realisation of fibre architectures with different vMF parameters, with
decreasing anisotropy and average fibre length from left to right.(Right) Slice through resin, blue shows
porosity defect. Example has higher porosity for demonstration ( 12%) and`kl = 0.1mm.

2.2. Finite element Formulation

Modelling a network of stiff fibre inclusions is challenging for two principle reasons. Firstly the aspect
ratio of the fibre is approximately 1 : 1000 (diameter to length), therefore a finite element representation
of a single fibre would require a prohibitively large number of elements. Secondly, the material contrast
between the fibre and resin is large (∼ a factor of 10), leading to complex local stress distributions
/ gradients. In this paper we address the first challenge by modelling fibres as stiff 1D dimensional
inclusions, as is often done for modelling steel reinforcements in concrete (e.g. rebar elements). As for
the second challenge, for now we assume that the resin and fibre are perfectly bonded and strain together.

The deformation of our recycled composite is defined by the vector displacement fieldu(x) = [u, v,w]T

onΩ, with corresponding small strain measure/ tensorε(u) = 1
2

(
∇u+ ∇uT

)
. Material strains are con-

nected to stresses in the resin via an isotropic elastic tensor such thatσr = Dr (x)ε, which depends on
Er (x) andνr the (locally varying) Young’s Modulus and poisson ratio of the resin respectively. For the
fibre reinforcement, we assume it is in a purely axially stressed state and there exists perfect bonding
between the fibre and the resin. Thus the local axial strain fieldε′xx can be determined directly from the
macro scale strainε such that

ε′xx = μ
2
1εxx + μ

2
2εyy + μ

2
3εzz+ μ1μ3εzx+ μ2μ3εyz+ μ1μ2εxy, (3)

whereμ = [μ1, μ2, μ3]T are the local direction cosines of the fibre (as define in the previous section). Of
all the six stress components in the fibre only theσ′xx is not zero, so thatσ′xx = Ef ε

′
xx, whereEf is the

Young’s Modulus of the fibre.

Subjected to a mixture of displacement (Dirichlet) and stress (Neumann) boundary conditions, stress
equilibrium ( in the absence of body forces) is given by the system of equations

∇ ∙ σ = 0 with u(x) = h for x ∈ ∂ΩDir. σ ∙ n = g(x) for x ∈ ∂Ω. (4)

wheren denotes the normal to the boundary ofΩ denoted∂Ω, and∇∙ the divergence operator. To solve
(3) with the finite element method (FEM) the system of differential equations (3) is recast in variational
(or weak) form, so that

a(u, v) +L(v) =
∫

Ω

D ε(u) : ε(v) dV+

∫

∂Ω
σ ∙ n dx = 0. (5)

This equation holds for any variation ˆu in a suitable function spaceV. The solutionu is also sought inV -
here the Sobolev spaceH1, the set of all square integrable functions, with square integral first derivatives,
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satisfying the displacement boundary conditions. To approximate theu the domain is discretised into a
structured (hexahedron) gridQh = {Ω(i)

e }nel
i=1, where nel is the number of elements, nvert the number of

vertices andh the largest dimension of the elements. The solution to (4) is approximated by restricting
displacements to the finite dimensional (vector) subspaceVh ⊂ V of continuous piecewise linear vector
functions inR3. For which each component of the displacement at the vertices is interpolated across the
domain with a set of piecewise linear shape functions{φi(x)}nvert

i=1 .

For a given random sample, a preprocessing steps first assign fibres (or part of fibres) to each finite
element and compute the local fibre volume fraction within each elementVf . The integration of the
element stiffness matrix is then split between the resin and fibre reinforcements, so that for a given
element and in matrix form the first term of (4) becomes

Ke =

∫

Ωresin
e

BT
e DrBe dVresin+

#fibres∑

i=1

1
2
πr2

f

∫

`i

BT
e

[
TTD f T

]
Bed`i . (6)

HereBe is the strain-displacement matrix which maps vertex displacements to strains with in an element,
Dr andD f are the elasticity matrices for the resin and fibre respectively, andT is the transformation
matrix of the strains from local to global coordinates (i.e. (2) rewritten in matrix form). In practice the
integral in both terms of (5) are computed using quadrature. Since (3) is a 3D vector equation, the total
global degrees of freedom areM = 3nvert. Therefore for any standard finite element calculation, element
stiffness matrices (5) can be combined into a single global stiffness matrix of the formKd = f where

K ∈ RM×M is the (sparse) global stiffness matrix andf ∈ RM is the load vector due to the prescribed

boundary conditions, and the solution vectord ∈ RM contains the displacements at each vertex. All
calculations, including the preprocessing steps for generating the fibres and the monte carlo algorithm
described in the section which follows, have been written in a bespoke code inc++. In particular for
the finite element calculation, the code utilises the high performance finite element library DUNE [9]. A
general framework which provides easy access to state of numerical solvers.

In this paper we are interested in computing theeffectivemacroscale properties of the recycled com-
posites. That is ifΣi j andEi j denote the (symmetric) macroscale stress and strain tensors, we wish to
calculate elements of theeffectivemacroscale elastic tensorCi jkl such thatΣi j = Ci jkl Ekl. To do this we
seek solutions of the formu(x) = Ex+uper.(x),where the symmetric matrixE containing macroscale strain
values, anduper. is a displacement field which is periodic on the boundary ofΩ such thatuper.(0) = 0
( to prevent rigid body modes). To calculate valuesCi jkl , we setEkl = Ekl = 1 and all other values to
zero. Using finite elements we then calculate the corresponding force,a(u∗, v), to achieve the displace-
mentu∗ on each vertex. This force then is the load vectorL(v) in (4), and we solve for the periodic
perturbationuper.. Written mathematically this is, finduper. such thata(uper., v)+a(u∗, v) = 0. Noting that
Σi j = |Ω|−1

∫
Ω
σi j (u) dΩ, the effective macroscale stiffness is given byCi jkl = Σi j/Ekl.

3. Multilevel Monte Carlos Methodology and Implementation

The aim is to quantify the distribution of a particular macro-scale property (e.g.Ci jkl ). From the model
formulation presented the simplest way to do this is Monte Carlos, in which we calculate the quantity of
interestQ = Ci jkl for N independent samples on a FEM grid withM degrees of freedom, and estimate
the expected valueE[Q] and varianceV[Q] of Q via

E[Q] ≈ Q̂MC
M,N =

1
N

N∑

i=1

Q(i)
M and V[Q] ≈ s2 =

1
N

N∑

i=1

(
Q(i)

M − Q̂MC
M,N

)2
. (7)
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For this estimate we quantity the its error, defined by the root mean square error (RSME)e(Q̂), given by

e(Q̂M,N)2 =
V[QM]

N
+ E[QM − Q]2 (8)

We see the RSME is made up of two terms. The first quantifies the sampling error, which arises from
approximatingE[Q] with only a finite number of samples. The second term represents the FEM error
arising from approximatingQ by QM, the solution of (4) on a finite dimensional grid. To produce suffi-
ciently small errors in our approximation ofE[Q] we need a large number of samplesN each computed
on a sufficiently fine (and costly to solve) finite element grid. For this application, we will see that stan-
dard Monte Carlo methods quickly become computationally unfeasible. To overcome we introduce a
hierarchy of computational grids, coarse cheaper, less accurate grids to fine, expensive, accurate ones,
Fig. 3 . We letL denote the maximum level, and grid levels` = 0 . . . L haveM` degrees of freedom. The
aim is to combine simulations across all grids, so that most the computations are done on the cheaper,
coarser levels; whilst we still obtain the accuracy of the predictions on the finer grids.

Figure 3. A typical hierarchy of computational grids used for MLMC. Here the coarsest grid` = 0 has
M0 = 192 degrees of freedom, the finest` = L = 3 hasM3 = 107,188.

Here we use the Multilevel Monte Carlo Method (MLCMC). The mathematical trick in this methods is
to exploit the linearity of a expectation operator i.e.E[A + B] = E[A] + E[B]. Therefore the expected
value on a fine grid can be rewritten as follows

E[QMl ] = E[QMl − QM`−1 + QM`−1] = E[QM`−1] + E[QMl − QM`−1], (9)

i.e. the expected value on a coarser grid, plus the expected value of the difference between the coarse
and fine grid. If we denote the random variableỲ = QMl − QM`−1 such thatY0 = QM0, we can repeat
this process of allL levels so thatE[QM] =

∑L
`=0E[Ỳ ]. As for standard monte carlos, expected values

on each levelE[Ỳ ] can be approximated bŷYMC
`

as define by (7). The multilevel approximation has
RSME error

∑L
`=0V[Q`]/N` + E[QML − Q]2. Importantly we note that the variances of differences (i.e.

V` = V[Ỳ ] for ` > 0) are much smaller than variances of the quantities themselvesV[Q`]; therefore on
the higher (or finer grid) levels we need many fewer samples to achieve a given sampling error. IfC`
denote the computational cost (in secs) on a single sample on level`, then if N` samples are done on
level `, the total computational of the algorithm is

∑L
`=0 N`C`. If we minimise this total cost subject to

the constraint that the total RSME isε, the optimal samples on each level are

N` =
2
ε2




L∑

i=0

√
ViCi




√
V`
C`
. (10)

In practice, to achieve a given RSME for our estimate, we can be computedN` and L “on the fly”
from the sample averages and the sample variances ofỲ . For details of how the MLMC algorithm
can be implemented see [7]. We do note that since each sample is independent the process is readily
parallelized by (equally) distributing samples across each available processor.
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4. Results - Demonstration of Methodology

In this section we briefly demonstrate the methodology proposed for a simple example for which we
compute the effective macroscale stiffnessC1111 for a SMC made with recovered fibres from the me-
chanical grinding process, as described in [3]. Calculations are on a periodic domainΩ = [0,1mm]3,
with a target fibre volume fractionVf = 25%. From experimental measurements of recovered fibres for
the mechanical grinding process [3] we take the following distributions for material properties

` ∼ Γ(4.48,1.82mm), Ef ∼ N(55.91 GPa,16.90 GPa) and r f ∼ N(7.75μm,0.84μm) (11)

Local variability in resin properties across these samples are captured with 1000 KL modes (10 in each
dimension) with a correlation length 1mm, for which the Young’s Modulus of the resinEr = 4.0GPa,
σr = and the cut-off parameter for a porosity defectβ = −1.96, which corresponds to on average a 1%
porosity in samples typical for SMC composite. For these numerical test theνr is taken as the fixed value
0.25. Finally the VMF fisher distribution parameters are fixed atk1 = 5 andk2 = 20. For all calculations
computation level 0 has 4 elements in each direction (64 in total) subsequent level as achieved by uniform
refinement (Fig. 3). All results presented are computed to a RSME of 0.5%.

Figure 4 (left) shows the average computational cost, for a single solve against degrees of freedom. For
this numerical experiment we estimate an average macroC1111= 11.27GPa, to do this we calculate 503
on the coarsest grid and only 6 samples on the most expensive grid (Fig. 4 (middle)). From this we
can estimate the computational gain over using a standard Monte Carlos method of approximately 15
fold. We note that for even smaller RSME this factor grows. As noted in section 3 this gain comes from
the variance reduction over the levels (Fig. 4 (right)), therefore many fewer samples are required on the
expensive levels for a fixed sampling error.

Figure 4. (Left) Degrees of freedom vs. Computational Cost. (Middle) MLMC samples per level.
(Right) Demonstration of variance reduction across the levels.

5. Concluding Remarks & Future Work

This paper details a novel sequence of modelling steps, to quantify the variability in composite materials
made from recovered fibres. Numerical experiments, parameterised by real data from a fibre recover pro-
cesses (Mechanical Grinding) demonstrate the potential of the methods described. In particular MLMC
demonstrates gains of as much as 15-fold computational speed-up over standard Monte Carlos methods.
Importantly such efficient methods allow better prediction of performance and encourage the use of recy-
cled fibres back into new composites. A clear route to increasing the business for recycling composites.
For the values we have not computed flexural stiffness directly, however from data values of SMC tensile
stiffness, the predicted values are within the typical range. Further work will (1) use the model access
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the functional relationship between the stochastic distribution of random inputs of the recovered fibres
and the SMC resin with the their macroscale properties. In particular unpick the non-trivial relationship
between fibre length and stiffness as reported in the experiments. (2) Improve the multiscale models for
failure of recycled composites rather than only stiffness. (3) Determine the VMF parameters (κ1 andκ2)
from experimental data. (4) Estimation the complete random tensor, this is however more complex since
the stiffness values are dependent, and the tensor itself must remain symmetric positive definite.
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