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Abstract

In this work, nonlinear representations of stress and strain under two-frequency loadings were
presented, and it was proposed to describe dynamic modules and loss angles by polynomials and to
use a time-temperature superposition for determining dependencies of the viscoelastic parameters on
the temperature; to determine viscoelastic parameters, it was proposed to use the Fourier series.

1. Introduction

The topic relevance is due to: the use of highly-filled polymer composites in important aerospace
structures and other industries; the action of complex harmonic loadings on structures where highly-
filled polymers are used; the need to develop methods of experimental research and to define
deformation properties of materials and calculation methods for structures working in extreme
conditions.

The aim of this research is to develop methods for conducting the dynamic experiment, to define
viscoelastic parameters of highly-filled polymer composites under stationary two-frequency loadings,
and to identify the mathematical model for calculating the stress-strain state of viscoelastic aerospace
structures.

2. Nonlinear representations of stress and strain under two-frequency loadings
Filled polymers are typically characterized by non-linear beahviour even in relatively small
deformations [1-8]. The general description of a method to mathematically model nonlinear

viscoelastic behavior was accomplished by Volterra using an earlier representation developed by
Frechet. The Volterra-Frechet equation [9-11] for one dimension is
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where 7 is the time before the observation moment t, £(t) is the relaxation modulus (function, kernel),
o 1S stress, ¢ is strain. The lower limit of the integral is -oo, because all events over the history of a
viscoelastic material contribute to the current state of stress and strain. Hereinafter we will use only the
first three terms of the series (1).

Now, we decompose Ei(t), E-(t) and E3(t) from Eqg. (1) into two parts

E,(t)=E,+ E (). )

The strain dependence on the time under stationary two-frequency loadings is
et)=¢,-€" +¢, €, (3)
where ¢,1, &, are the strain amplitudes, w1, w1 are the angular frequencies. Next, we insert Eq. (2) into

Eg. (1), and then Eq. (3) in Eq. (1). As a result, the first term of the series (1) can be written as
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After changing the variable t — 71 = 1 EqQ. (4) can be transformed as

t
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After similar solutions (4-11) for second and fourth terms of the series (1), Eq. (1) can be written as
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where E is the complex modulus, £’ is storage modulus, £ is loss modulus, ¢e is phase lag between

stress and strain (phase angle, loss angle), E” is dynamic modulus.
After inserting Egs. (35) and (36) into Eq. (34) we obtain
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E, =E (cosgpg, +ising,,). (39)

Using Euler's formula [12], Eq. (39) can be transformed as
én =E g (40)

The analysis of Egs. (6-33) shows: Eii(w1;T) and Eip(w2;T), Exn(w1;T) and Ezp(w2;T), Esn(ws;T) and
Esn(w2;T) have the same graphic dependences respectively; if K = 1 (two-frequency loading — one-
frequency Ioading, w1 = a)z), then E1/1(T) = El/z(T), Ez/l(T) = Ez/z(T) = Ez/g(T)/Z, E3/1(T) = Eg/z(T) =
Eas(7)/3 = Eas(7)/3; if K = 0 (two-frequency loading — one-frequency loading + preliminary static

strain ex, &t = &1, w1 = 0), then E,,(T)=2E,, E,;(T)=0, E,,(T)=E,,(T)=3E,,
E;,a(T)=E;/4(T)=0.

The relaxation functions (modules, kernels) can be described by different dependencies [11, 13], for
example, an exponential function. However, the relaxation function selection from the dynamic test
data is a rather difficult and time-consuming process. In the authors’ opinion, it is easier to determine
dynamic modules and loss angles from the experiment by determining the dependencies of stress and
strain in the sample under two-frequency loadings as

e(t) =g, sin27vt+¢,,SIN 271t | (41)

Vl:a)% ’ VZZCU% ’ K:%Z, (42)

where v is frequency, and obtained dependencies of dynamic modules and loss angles on frequency
and temperature can be described by polynomials. Polynomial models are rather simple in practical
application [14]. A description of these models can be improved by increasing the polynomial degree.
Time—temperature superposition can be used for describing the viscoelastic material behavior under
various constant temperatures [9, 15-19]. The values of dynamic modules and loss angles can be
determined like in works [20-21] by Fourier series.

3. Conclusions

As a result of this work, nonlinear representations of stress and strain under two-frequency loadings
were presented, and it was proposed to use polynomials to describe dependencies of dynamic modules
and loss angles on frequency. It was also proposed to use a time-temperature superposition for the
accounting of the viscoelastic properties on the temperature, and to use the Fourier series to determine
the viscoelastic parameters.

Future work includes defining graphic dependences of dynamic modules and loss angles on
frequencies and temperature, developing optimal experimental design, determining material constants,
and checking the model adequacy.
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