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Abstract 
In addition to the intrinsic high specific strength, high specific stiffness, and high fatigue resistance, 
fiber-reinforced composite materials also provide higher flexibility in engineering and design because 
of the unlimited variations in laminate designs and material selections. Unfortunately the current 
design optimization process practiced in aircraft industries requires numerous coupon and component 
level testing for every considered design. This study is aimed at developing progressive damage 
simulation tools for composite stiffeners under bending in the presence of damage due to impact load. 
The combined experimental and simulation studies shows that a proper progressive damage tools can 
give a better understanding of the underlying progressive failure mechanisms during impact and how it 
influences the residual four point bend strength. It was found first in simulation and then also in 
experiment that changing the orientation of a few longitudinal plies to the transverse direction can 
reduce the extent of impact damage and increase residual bending strength. This proves that the 
simulations can be used to complement experimental testing by guiding engineers to find the correct 
path of finding better design solutions and therefore can potentially reduce the design cycle and cost.  
 
1. Introduction 
 
Fiber reinforced plastic composites are increasingly being used in aircraft structures because of their 
intrinsic high specific strength, high specific stiffness, and high fatigue resistance. Furthermore, fiber 
reinforced plastic composites are typically anisotropic an hence they are very ideal to be used in 
structures that are mainly loaded in one direction such as frames, stringers, ribs, etc. The loads in these 
structures are mainly bending, tension, or compression in its longitudinal direction and thus engineers 
can design a composite laminates that has high stiffness and strength in this direction to save weights. 
 
In addition to the potential weight saving due to the superior intrinsic properties, employment of fiber 
reinforced plastic composites also significantly enlarge the design space because engineers are not 
only able to choose geometric parameters such as shape and thickness but also materials and layup 
design. These parameters can be tailored to obtain a design that can fulfill its function as load bearing 
structures while having the lowest possible weight and costs.  Finding the most optimum combination 
of those design parameters is however not an easy task as the current design optimization process 
requires numerous tests for each design iteration. A better understanding of failure mechanisms may 
lead to a more systematic method for searching a better design. Robust and accurate numerical model 
may be used to study the failure mechanism and perform virtual tests. This will expedite and reduce 
the cost of design iterations.  
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residual strength and the actual residual strength obtained from test, the knowledge gained from the 
simulation is shown to be very useful for finding better frame design that has higher residual bending 
strength after impact. It should be noted that the minor discrepancies may be caused by the 
assumptions made for some of the material properties in the absence of experimental data. 
 
The analysis shows that increasing the number of 0° plies in the frame is not necesarilly a good 
solution for composite frames or other stiffeners although the main loads in these stiffeners are in the 
longitudinal direction such as compression, tension, or bending. Transverse direction stiffness is also 
important in this structure because of the requirement for tolerance to accidental impact load. 
Additional 90° or other high angled plies are needed to increase the transverse direction stiffness and 
strength to reduce the severity of damage upon accidental impact which in turn can increase the 
overall residual strength of the stiffener especially under bending load. 
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