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Abstract
In this paper, a 3D thermodynamically-based work potential theory for modeling progressive damage
for laminated, unidirectional composites,extend from 2D Schapery’s theory, is used to predict the re-
sponse of unidirectional composites under three point bending. An internal state variable, S, is defined
to account for the dissipated energy due to damage evolution in the form of microstructural changes in
the matrix. With the stationary of the total work potential with respect to the internal state variable, a
thermodynamically-consistent set of evolution equations is derived. The internal state variable is related
to the transverse and shear moduli through microdamage functions. The shear modulus and transverse
modulus expressed as a function of internal state variable are obtained from coupon tests. The shear
modulus and transverse modulus expressed as a function of internal state variable are implemented into
3D Schaperys theory to predict unidirectional composites under three point bending. The comparison of
show good agreement between simulations and experiments under three point bending.

1. Introduction

Development of reliable computational methods for the prediction of laminated progressive failure has
advanced for decades and is an ongoing active research effort. Damage simulations in composites can be
broadly divided into four categories. The first category is based on the first-ply failure criteria approach
[1] which was initially developed for lamina in unidirectional composites. The disadvantage in using the
first-ply failure criteria approach is that, once a failure criterion is met, the whole lamia is regarded as
have failed. Neither the position, or evolution, of damage or crack can be predicted, which often leads
to error in the structural failure predictions. The second approach is based on fracture mechanics where
the energy release rate, defined as energy dissipated during fracture per unit of created fracture surface
area, is compared against a critical energy release rate to determine whether cracks advance [2]. The
third approach uses plasticity which is more appropriate for composites exhibiting ductile behavior [3],
although substantial permanent deformation may not exist upon unloading of the composite. The fourth
approach is progressive failure modeling based on the continuum damage mechanics (CDM) approach
[4] [5] [6] [7] [8]. The advantage of the CDM approach is that it can use stress and or strain failure
criteria for predicting damage initiation coupled with progressive failure evolution.

Over the past two decades, polymer textile fiber composites (TFCs) have become attractive for lightweight
applications because of their inherent toughness and inexpensive manufacturing costs. Detailed intro-
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duction to TFCs can be seen in [9] and [10]. Laminated textile composites have been used in adaptive
wind turbine blades [11] and in the automobile [12]. Textile fiber composites are flexible. In that, the
microstructure can be tailored to attain the desired, macroscopic mechanical properties.

In order to reliably and accurately predict progressive failure of textile composites, it is necessary to
develop a mesoscale model in which the morphology of the fiber tows is captured by explicitly modeling
the weave architecture. However, from the hierarchical structure of textile composites, shown in Fig-
ure 1, it can be seen that the fiber tows locally can be treated as transversely isotropic materials. One
strategy for modeling TFCs is to employ the same methods used for unidirectional composites within
the fiber tows of a mesoscale model [13] [14]. Moreover, the plane stress assumption often used for uni-
directional laminates does not hold locally for the fiber tows because of the tow undulations and weave
architecture. Thus, a 3D, transversely isotropic, constitutive model must be developed, and understand-
ing the progressive failure of unidirectional laminates is the first step towards modeling the progressive
failure of textile composites.

Figure 1. Hierarchical structures of textile composites.

Schapery proposed a thermodynamically based work potential theory for progressive failure of unidi-
rectional composites [15]. The cited formulation utilizes a plane stress assumption for laminated plates.
In Schapery’s theory, the response in the fiber direction is linear, whereas damage due to microscopic
cracking in the matrix affects the transverse modulus and shear modulus. Thus, the instantaneous trans-
verse and shear moduli are functions of damage, represented with an internal state variable, accumulated
during the loading. Schaperys theory has previously been implemented within the finite element method
to model the tensile and compressive response of 2D, notched composite plates [7] [8].

In this paper, the plane stress formulation of Schapery’s theory [15] for laminates is extended to
accommodate a fully 3D stress state while maintaining the transversely isotropic assumption commonly
used for unidirectional composites. The 3D theory is implemented within the Abaqus finite element
method software package via a user defined subroutine (UMAT). This numerical implementation is used
to model unidirectional laminates with the intent of using it in the future for modeling progressive failure
of the fiber tows in TFCs. A crux of Schaperys theory is the use of microdamage functions, obtained from
coupon experiments, to relate the degraded stiffnesses to the internal state variable. There exists a great
amount of flexibility in how the experimental data is fit to obtain the microdamage functions. Sicking
[16] observed that the internal state variable S , which represents the matrix microdamage evolves as
the cube of the applied strain. Thus, Sicking introduced a reduced internal state variable S r, defined
as S

1
3 . Subsequently, the Young’s modulus and shear modulus were defined as polynomial functions in

S r. An additional focus of the present work is to analyze and compare progressive failure predictions
obtained using various forms of the matrix microdamage functions. Three different forms for the matrix
microdamage functions, where the exponent that defines the reduced internal state variable and the order

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 3

of the polynomial fit of the stiffness versus reduced internal state variable data are varied, are used as
input in Schapery’s theory. A notched composites panel is created to conduct compression simulations
using the three methods. Finally, the results are compared and summary are presented.

2. Guidelines

3. 3D formulation of Schapery’s theory for unidirectional composites

Schapery proposed a thermodynamically-based work potential theory for laminated composites[15].
Over the years, the theory has been used and extended by different researchers [8],[7], [6] to model
progressive failure of laminated composites within the finite element method. An internal state variable,
S , is used to describe the energy dissipated in Figure 2 due to damage or microstructural changes under
loading. From experiment, it has been shown that there is negligible stiffness degradation in the lon-
gitudinal (or fiber) direction but stiffness degradation, due to damage accumulation, does occur in the
transverse direction. Thus, the transverse and shear stiffnesses are not constant but are functions of the
internal state of the material.

Figure 2. Schematic of state variable S and recoverable energy density W [6]

The total work potential, WT , is the sum of the recoverable, elastic strain energy density, WS train, and
the dissipated energy potential, S .

WT = WS train + S (1)

Due to the principle of stationarity of the total work potential with respect to the internal state variable,
at any instant of thermodynamic equilibrium, the following equation holds

∂WT

∂S
= 0 (2)

Also, the dissipated energy ,S , is not reversible. That is,

Ṡ ≥ 0 (3)

Substituting Eq (1) into Eq (2), the evolution equation for laminated composites can be derived.

Assuming the local coordinate 1 is defined to align with the fiber direction, direction 2 and direction 3
are aligned with the transverse direction normal to the fiber direction. The fully 3D strain state can be
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expressed in terms of stress by the compliance matrix, [C]. That is , {ε}= [C] {σ} where [C] is expressed
as follows

[C] =



1
E1

−ν21
E2

−ν21
E2

0 0 0
−ν12
E1

1
E2

−ν23
E2

0 0 0
−ν12
E1

−ν23
E2

1
E2

0 0 0
0 0 0 (1+ν23)

E2
0 0

0 0 0 0 1
2G12

0
0 0 0 0 0 1

2G12


(4)

The five parameters, E1, E2,G12, ν21, ν23 are used to describe a transversely isotropic lamina, or fiber
tow. Due to symmetry, the term −ν21

E2
is equivalent to the term −ν12

E1
. Thus, ν12 is not an independent

variable. By taking the inverse of the compliance matrix [C], the stiffness matrix [K] can be expressed
as the following



K11 K12 K12 0 0 0
K12 K22 K23 0 0 0
K12 K23 K22 0 0 0
0 0 0 K44 0 0
0 0 0 0 K55 0
0 0 0 0 0 K55


(5)

where

K11 =
E1E2(−1 + ν23)

2E1ν
2
21 + E2(−1 + ν23)

(6)

K12 =
−E1E2ν21

2E1ν
2
21 + E2(−1 + ν23)

(7)

K22 =
−E2(E2 − E1ν

2
21)

(2E1ν
2
21 + E2(−1 + ν23))(1 + ν23)

(8)

K23 =
−E2(E2ν23 + E1ν

2
21)

(2E1ν
2
21 + E2(−1 + ν23))(1 + ν23)

(9)

K44 =
E2

(1 + ν23)
(10)
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K55 = 2G12 (11)

Typically, the product of two Poisson ratios is relatively small; i.e., ν21ν21 << 1. Thus, [K] matrix can
be simplified as the following

[K] =



E1
E1ν21
1−ν23

E1ν21
1−ν23

0 0 0
E1ν21
1−ν23

E2 E2ν23 0 0 0
E1ν21
1−ν23

E2ν23 E2 0 0 0
0 0 0 E2

(1+ν23) 0 0
0 0 0 0 2G12 0
0 0 0 0 0 2G12


(12)

Expanding the elastic strain energy density Wstrain =
{ε}T [K]{ε}

2 by use of Eq (12), one can obtain

Wstrain = 1
2 (G12(S )γ2

12 + E2(S )ε2
22

+ G12(S )γ2
31 + E2(S )ε2

33 +
2E1ε22ε11ν23

1−ν23
+

2E1ε33ε11ν23
1−ν23

+
E1ε

2
11

1−ν23
+ 2E2(S )ε22ε33ν23 −

E1ε
2
11ν23

1−ν23
+

E2(S )γ2
23

2(1+ν23) )

(13)

Where γi j = 2εi j are the engineering (as opposed to tensorial) definitions of shear strain. Note that, only
the transverse Young’s modulus, E2, and shear modulus, G12, are functions of S , per the previously stated
assumptions about the matrix damage modes. The damage moduli are related to the virgin (undamaged)
moduli E20 and G120 and the internal state variable S through a pair of matrix microdamage functions es

and gs that are obtained from three coupon experiments.

E2 = E20es(S ) (14)

G12 = G120gs(S ) (15)

The components of the stiffness matrix K22 = K33 and K55 = K66 for all S so the stiffness matrix remains
transversely isotropic even as damage evolves. This type of damage evolution mimics a spherical type of
damage growth, although E11 is assumed unaffected due because of the presence of the fiber, rather than
planar cracks. This assumption was used to simplify the formulation and implementation of this damage
model by eliminating the requirement of defining a crack orientation in 3D space.

Substituting Eq. (13) and Eq. (1) into Eq (2) results in an evolution equation that can be used to solve
for S for a given strain state. Following [15] a reduced internal state variable S r can be used in place of
S , so that the experimental data can be easily fit with a polynomial

S r = S
1
n (16)
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With Eq (16) and the chain rule for derivatives, Eq (2) can be written as follows

∂Wstrain

∂S r
= −nS n−1

r (17)

In the literature [15] [6] [8], both E2 and G12 are expressed by 5th order polynomial of S r.

Different combinations of orders of polynomials for E2 and G12 and objectivity are studied in [17]. In
this section, derivation with regard to 5th order polynomial for E2 and 5th order polynomial for G12 are
presented in the following.

E2 = E20(e0 + e1S r + e2S 2
r + e3S 3

r + e4S 4
r + e5S 5

r ) (18)

G12 = G120(g0 + g1S r + g2S 2
r + g3S 3

r + g4S 4
r + g5S 5

r ) (19)

Substituting Eq (18) and Eq (19), Eq (13) into the evolution equation Eq (17), one can obtain the evolution
equation in terms of a fifth order polynomial for S r expressed as the following

a0 + a1S r + a2S 2
r + a3S 3

r + a4S 4
r = 0 (20)

where

a0 =
g1G120(γ2

12 + γ2
31)

2
+

e1E20(γ2
23)

4

+
e1E20(ε2

22 + ε2
33)

2
+ e1E20ε22ε33ν23 (21)

a1 = g2G120(γ2
12 + γ2

31) + e2E20

(ε2
22 + ε2

33) + 2e2E20ε22ε33ν23 +
e2E20γ

2
23

2(1 + ν23)
(22)

a2 = 3 +
3
2

g3G120(γ2
12 + γ2

31) +
3
2

e3E20(ε2
22

+ε2
33) + 3e3E20ε22ε33ν23 +

3
4

e3E20γ
2
23

(1 + ν23)
(23)
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a3 = 2g4G120(γ2
12 + γ2

31) + 2e4E20(ε2
22 + ε2

33)

+4e4E20ε22ε33ν23 +
e4E20γ

2
23

(1 + ν23)
(24)

a4 =
5
2

g5G120(γ2
12 + γ2

31)

+
5
2

e3E20(ε2
22 + ε2

33) + 5e5E20ε22ε33ν23 +
5
4

e5E20γ
2
23

(1 + ν23)
(25)

The 5th order polynomial for S r in Eq (20) is solved by the method in [18]. The solutions contain both
complex numbers and real numbers and the complex numbers are excluded from being used as values
for the reduced internal state variable, S r.

4. Experiment

4.1. Characterizing internal state variable from Compressive tests

A compressive test is conducted where load is applied in the transverse direction of unidirectional com-
posites to establish the relation between the transverse modulus and the internal state variable. A com-
pressive test is conducted in [45] composites to to establish the relation between the shear modulus and
the internal state variable. Compressive tests were performed on a servo-hydraulic universal test machine
by Shimadzu Inc. An image of the experimental setup is shown in Figure 3

Figure 3. Setup of compression test

The width of the specimen is 71.15 mm and the height of the specimen is 71.26 mm. The thickness of
the specimens ranges from 7.8 mm. For each experiment, two strain gages were attached to the specimen
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(back to back) aligned with the loading direction and one in the transverse direction on one side. The
purpose of using two strain gages in the loading direction is to monitor any unwanted bending that
may occur during the compression loading. In a compressive test, A small pre-load is imposed on the
specimen and all strain gages are zeroed at this state. The strain gage readings and the load cell readings
are acquired at 4Hz, while the axial cross-head movement rate imposed on the specimen is 0.020 mm/sec.

The stress-strain curve for load applied in the transverse direction of composites is in Figure 4. With
Figure 4, at a specific location, the corresponding internal state variable (or reduced internal state vari-
able), S (or S r), and degraded transverse modulus can be calculated. The coefficients for polynomial es

related transverse modulus and reduced internal state variable are summarized in Table 1. A compressive
test is conducted on a [45]16 composite to extract the shear modulus and shear strain. The stress-strain
curve for shear modulus is in Figure 5. The corresponding internal state variable (or reduced internal
state variable), S (or S r), and degraded shear modulus can be calculated. The coefficients for polynomial
gs related shear modulus and reduced internal state variable are summarized in Table 1. The plot of
polynomial es for transverse modulus and the plot of polynomial gs for shear modulus are in Figure 6
and Figure 7.

e0 1 g0 1
e1 0.137676 g1 -0.0837419
e2 -0.0349585 g2 0.00756448
e3 0.00286427 g3 -0.000310913
e4 -0.000103419 g4 5.215e-6
e5 1.357e-6 g5 -9.9161e-8

Table 1. The coefficients of ei and gi for unidirectional composites
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Figure 4. Stress strain curve for transverse modulus

5. Three point bending tests and simulations

The material parameters extracted from the coupon tests are implemented in 3D Schapery’s theory for
predicting unidirectional composites under three point bending tests. The composites plate of dimen-
sion 147.5 mm by 120 mm by 6.2 mm and the setup of the three point bending test is in Figure 8. The
3D extension of Schaperys theory for unidirectional composites is implemented in a UMAT user defined
subroutine in Abaqus[19]. The stress-strain curves used in simulations for E2 and G12 are in Figure 4 and
Figure 5. These stress-strain curves exhibit post-peak strain softening. It has been well documented that
numerical simulations utilizing constitutive laws exhibiting post-peak strain softening suffer from patho-
logical mesh dependence [20]. It should be noted that Schaperys theory has previously been enhanced
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Figure 5. Stress strain curve for shear modulus
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Figure 6. es as a function of reduced state variable S r

to eliminate pathological mesh dependence through regularization of the energy dissipated in the post-
peak regime via introduction of a characteristic element length and additional internal state variables[6].
However, that formulation is omitted herein to focus on extension of only the microdamage model to 3D.

The unloading path at any point on the stress-strain curve is assumed to follow a line connecting the
current point and the origin (secant). Thus, the transverse stiffness and shear stiffness, as a function of
the internal state variable S , can be calculated.

S r = S
1
3 is used following [15] [6], as a reduced internal state variable for eS (S r) and gS (S r) in Figure 6

and Figure 7. In each step during the simulations, an incremental strain is given, and with the information
given above, the corresponding S r at this step can be calculated from Eq (20). The transverse modulus
and shear modulus can then be calculated with Eq (18) and Eq (19) with the coefficients in Table 1
and used to update the integration point stresses, satisfying equilibrium. The comparison of simulations
with four tests are in Figure 9. The simulations and experimental results show good agrement before the
failure occurs.

6. Conclusions

In this paper, 3D Schaper’s theory for unidirectional composites is used to model unidirectional com-
posites under three point bending. Compressive tests are conducted to obtain the relation between the
internal state variable and the transverse modulus, shear modulus. The simulations and experimental
results show good agrement before the failure occurs.
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Figure 7. gs as a function of reduced state variable S r

Figure 8. Setup of for three point bending
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Figure 9. Comparison of simulations with test data of three point bending
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