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Abstract
For achieving good predictability of the deformation of structural composite components in crash simula-
tions, a proper modelling of the delamination process is crucial. However, due to industrial restrictions on
the simulation time of crash simulations, detailed modelling of each ply by separate elements through the
thickness is not feasible. A potential remedy is to adopt the concept of adaptive shell elements which can
be enriched whenever delaminations need to be accounted for. Hence, a structural model of a thinwalled
laminate can thereby initially be built up from a single layer of shell elements through the thickness. During
loading, the model is then enriched locally in critical areas where delamination is predicted. In this con-
tribution, we show the potential of such an approach, where delamination cracks are adaptively introduced
in the analysis based on a stress criterion in terms of the transverse stresses. A specific challenge is that
these stresses are predicted with low accuracy in the FE model, whereby a post-processing step is proposed
where an improved prediction is reconstructed based on the momentum balance equations. We show the
potential of the proposed methodologys ability to capture initiating and propagating delaminations, and can
conclude that the proposed methodology appears to be suitable for the simulation of thin-walled structures
undergoing substantial delaminations.

1. Introduction

To meet the increasing demands from regulatory bodies on CO2 emissions from automotive cars, the auto-
motive industry is currently very active in reducing vehicle weight, where one significant step is to increase
the amount of Fibre Reinforced Polymers (FRPs) due to their superior specific properties (e.g. specific
strength and specific energy absorption in axial crushing) compared to conventional metals. However, as
concluded in the European Roadmap to Safe Road Transport [1], the numerical finite element (FE) tools
for the accurate prediction of the crash response of vehicle structures in FRPs are crucial for structural
composites to have a widespread use in future cars.

Traditionally, FE crash simulations are performed using equivalent single-layer shell element models, which
are well suited to model the thin-walled metal structures in automotive bodies while at the same time being
computationally cost effective compared to continuum solid (3D) element models. However, to achieve
good predictability of the deformation of structural composite components in crash simulations, a proper
modelling of the delamination process is crucial. At the same time, industrial restrictions on the simulation
time of crash simulations implies that detailed modelling of each ply as represented by separate elements
through the thickness is not feasible.

Thus, to be able to perform large scale simulations of progressive crash failure in FRPs (e.g. to capture
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delamination, driven by high transverse stresses) while maintaining a good level of predictability, better
suited types of FE-models need to be adopted. Prerequisites for such models are that they need to be both
accurate and computationally efficient – a challenge addressed in this paper. Thereby, we choose to adopt an
equivalent single-layer shell model recently proposed by Brouzoulis and Fagerström [2] where delamination
failure is described using local extension of the element formulation.

Such element formulations have been proposed by several authors previously. Remmers et al.[3] presented
a solid-like ESL shell capable of describing an arbitrary delamination using the partition-of-unity modelling
concept the eXtended Finite Element Method (XFEM) [4]. This allows for mesh independent represen-
tations of arbitrary discontinuities (e.g. cracks and delaminations) by introducing kinematic enrichments
locally in the vicinity of the propagating crack. A similar approach was recently proposed in Brouzoulis and
Fagerström [2] although extended to include an arbitrary number of delaminations. Other partition-of-unity
concepts like the phantom node or the floating node approaches have also been used by authors like Ahmed
and Sluys [5] and McElroy [6] to model propagating delaminations. A related concept has been proposed
by Hosseini et al.[7], where a shell element based on the isogeometric analysis concept is extended to model
propagating delamination by modifying the knot-vector associated to the thickness interpolation. Regardless
of the chosen method, the common idea is that the delamination enrichments can be made locally. However,
if the methods are to be computationally efficient they must be used in a methodology which is able to asses
when and where to insert the enrichments.

An emerging challenge is therefore the fact that through-the-thickness predicted transverse (out-of-plane)
stress components are predicted with low accuracy when using traditional shell element formulations [8].
This issue was addressed in a previous work by the authors [9], where it was concluded that the traditional
post-processing recovery method for improving the prediction of the transverse stresses provides acceptable
results for mechanical loading, as also concluded in the reviews by Carrera [10] and Noor and Malik [11].
In this work we further develop this recovery method and use it to locate critical areas where the adopted
shell formulation can be locally enriched, such that the kinematics of delamination can be captured even
using an equivalent single-layer model.

2. Shell formulation for multiple delaminations

To set the stage, we start by presenting the adopted kinematic shell framework proposed by Brouzoulis and
Fagerström [2]. The framework consists of three interrelated domains; the inertial Cartesian domain BC , the
undeformed (reference) domain B0 and the deformed domain B with pertinent mappings, cf. Figure 1.
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Figure 1. Mappings of shell model defining undeformed and deformed shell domains relative to the inertial
Cartesian domain.

J. Främby, M. Fagerström and J. Brouzoulis

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 3

2.1. Initial shell geometry

Following Brouzoulis and Fagerström [2], we have that the reference domain B0 of the shell is considered
parametrised in terms of convected (co-variant) coordinates ξ = (ξ1, ξ2, ξ3 = ξ). This means that a point ξ
in the inertial domain is mapped to a corresponding point X in the undeformed domain via the mapping

X = Φ(ξ). (1)

In a similar fashion, we have that a point on the mid-surface ξ0 = (ξ1, ξ2) in the inertial domain is mapped
to a corresponding mid-surface point X̄ in the undeformed domain via

X̄ = Φ̄(ξ0). (2)

Associated with the mapping Φ, we also have the co-variant base vectors Gi in the undeformed domain as

Gi = Φ,i, (3)

where •,i denotes the partial derivative of • with respect to ξi, i = 1, 2, 3.

2.2. Deformed shell geometry with multiple delaminations

Similarly to the geometry mapping described above, we also have that the deformed geometry is described
by the deformation map ϕ(ξ) ∈ B from the inertial Cartesian frame. This means that the deformed position
x of a material point X is generally given by

x = ϕ(ξ) (4)

with the pertinent co-variant base vectors in the deformed domain defined as

gi = ϕ,i. (5)

To describe multiple delaminations within one and the same shell element, the above defined spatial defor-
mation map ϕ needs to be extended to allow for displacement discontinuities across delamination interfaces.
This is achieved by locally enriching the displacement approximation of the shell in the vicinity of interlam-
inar cracks in line with the XFEM. Thus, the deformation map of the deformed domain is subdivided into
one continuous and one discontinuous part as

ϕ(ξ) = ϕc(ξ) + ϕd(ξ), (6)

where the continuous part ϕc takes on the form

ϕc(ξ) = ϕ̄c(ξ0) + ξmc(ξ0) +
1
2
ξ2γc(ξ0)m(ξ0) (7)

in terms of the deformed mid-surface placement ϕ̄c, the extensible director field mc and an additional scalar
thickness strain γc (leading to seven degrees of freedom per node for the continuous deformation).

As for the discontinuous part ϕd, it is constructed as a sum of enrichments (one for each delamination) as

ϕd =

Ndel∑
k=1

ψk
(
ϕ̄d

k(ξ0) + ξmd
k(ξ0)

)︸                  ︷︷                  ︸
ϕd

k

(8)

where the existing delamination cracks are numbered globally starting from the bottom of the laminate
and where ψk is a discontinuous enrichment function which is one above delamination crack k and zero
elsewhere. To be specific, the enrichment function ψk ensures that the particular enrichment ϕd

k is introduced
only for points inside the delamination zone. However, please note that, since a Heaviside function is
used for the enrichment, the continuity requirement ϕd

k = 0 needs to be explicitly enforced along each
delamination crack front.
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3. Improved prediction of transverse stresses by stress recovery

To obtain an better prediction of the transverse stresses we propose to use a post-processing stress recovery
method where improved values are recovered from the 3D momentum balance equations.

The recovery of the transverse stress variation through the thickness of the shell is made via thickness
integration of the 3D momentum balance equations. For zero body forces under quasi-static conditions we
can find the transverse stresses (expressed in a co-rotated coordinate system x1x2x3) as:

σ̂k
α3 = −

k∑
n=1

x(n)
3∫

x(n−1)
3

(
σα1,1 + σα2,2

)
dx3 + Cα, σ̂

k
33 =

k∑
n=1

x(n)
3∫

x(n−1)
3

x(n)
3∫

x(n−1)
3

(
σ11,11 + σ22,22 + 2σ12,12

)
dx3dx3 + C3x3 + C4, (9)

where x3 is the local transverse direction, x(n−1)
3 and x(n)

3 denote the lower and upper thickness coordinate of
ply n, i denotes derivative with respect to coordinate i = [1, 2] and •̂ denotes recovered values.

In the case of transverse shear stresses in Eq. (9), the integration constant Cα can be determined from the
known value of σα3 at either of the two boundaries at x3 = ± h

2 . In this work we handle this by performing
the integral from the bottom of the laminate, starting at the bottom boundary condition, and then calculating
the potential integration error at the top surface. The resulting error is then distributed evenly through the
thickness, resulting in equal integration errors at the top and bottom surface. Thus, the recovery of the
transverse shear stresses does not guarantee to fulfil the boundary shear tractions. For the transverse normal
stress σ̂33 the integration of the second order equation produce two integration constants, which results in
automatic fulfilment of the normal traction at the top and bottom surface.

The integrations in Eq. (9) involves the in-plane first and second derivatives of the in-plane stresses, which
must be extracted from the FE-solution. To do so we have adopted a technique similar to the Exact Surface
Fitting Method in [12], where the in-plane stresses in layer k are are approximated using the polynomial fit

σk
αβ = P(x1, x2, x3)aαβ (10)

to the integration point stress values. In order to represent quadratic variation of the shear stresses and
cubic variation of the normal stress through the thickness of the laminate, we choose the polynomial terms
P(x1, x2, x3) in Eq. (10) to be

P(x1, x2, x3) = [1 x1 x2 x3 x2x3 x1x3 x1x2 x2
1 x2

2 x2
1x3 x2

2x3] (11)

with the corresponding unknown coefficients

aαβ = [a(1)
αβ a(2)

αβ a(3)
αβ a(4)

αβ a(5)
αβ a(6)

αβ a(7)
αβ a(8)

αβ a(9)
αβ a(10)

αβ a(11)
αβ ]T . (12)

When the polynomial coefficients are determined, analytical expressions of Eq. (9) can be created by taking
the derivative and and subsequent integral of the stress polynomial in Eq. (10):

σ̂k
α3 = −P∫

3,1
aα1 − P∫

3,2
aα2 + Cα, (13)

σ̂k
33 = P∫∫

3,11 a11 + P∫∫
3,22 a22 + 2P∫∫

3,12 a12 + C3x3 + C4. (14)

where

P∫
3,1

=

∫
x3

P,1 dx3, P∫
3,2

=

∫
x3

P,2 dx3,

P∫∫
3,11 =

∫∫
x3

P,11 dx3dx3, P∫∫
3,22 =

∫∫
x3

P,22 dx3dx3, P∫∫
3,12 =

∫∫
x3

P,12 dx3dx3

(15)
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Please note that with the chosen shell kinematics, the in-plane stress components themselves are predicted
with acceptable accuracy. However, as in the case of any C0-continuous finite element, the stresses from
the FE solution are not continuous over element boundaries, meaning that the stress gradients cannot be
evaluated from single elements without making some simplifying assumption (cf. e.g. [13]). Thus, it is
not sufficient to construct the stress polynomial individually within each element. We therefore perform the
polynomial fit in Eq. (12) to all the ply integration points in an element patch including the neighbouring
elements. Please also note that in order to solve for the chosen polynomial P(x1, x2, x3) in Eq. (12), it is
necessary to have at least three integration points in the thickness and in-plane directions.

4. Adaptive enrichment concept for delamination initiation and propagation

As a criterion for delamination initiation, we choose to adopt a criterion similar to that proposed by Ochoa
and Engblom [14]. The criterion features a quadratic relation between the tensile transverse normal and the
resulting transverse shear stresses (in our case obtained from the stress recovery):

fI =

(
〈σ̂33〉+

σfn

)2

+
σ̂2

13 + σ̂2
23

σ2
fs

≥ r2
I , 0 < rI ≤ 1. (16)

where σfn and σfs are the interlaminar tensile normal and shear strength respectively and 〈•〉+ is the positive
Macaulay brackets. Please note that in order to avoid numerical problems at the point of intiation, we
propose to enrich new delmination zones at a stress state somewhat lower than the critical state (rI < 1).
Furthermore, when the delamination initiation criterion in Eq. (16) is reached at any interface in any element,
all nodes (and elements) within a certain radius RI are enriched. The appropriate initiation level rI and
appropriate size of the initiation radius RI are addressed in [15].

The active delamination enrichment and associated cohesive law must be able to evolve properly. This im-
plies that the cohesive zone must be large enough such that the kinematics of the crack is captured correctly.
This will in our case, where we introduce delamination enrichments adaptively throughout the analysis, af-
fect how large the size of any active enrichment should be. In order to achieve this, we propose a propagation
criterion, which expands the enrichment when necessary. This criterion reaches unity whenever softening of
the interface has been introduced anywhere in the delamination, i.e. if any of the elements associated with
the delamination reaches its interlaminar failure strength and damage has begun:

fP = 1 if d > rP in Γdel, (17)

where rP is a small number close to zero and Γdel represents the surface of a delamination. When the prop-
agation criterion in Eq. (17) becomes active in any element in a delamination, the enrichment is expanded
to include all nodes a distance RP from the element nodes. The appropriate damage level rP and expansion
radius RP of the delamination enrichment is addressed in [15].

5. Numerical examples

In this section, we verify the proposed methodology by two numerical examples, sketched in Figure 2. In
Subsection 5.1, we first demonstrate results from the recovery of the transverse stresses. We consider here
a situation with applied tractions on the shell surfaces, and show that the recovery method works well. In
the next step, we consider propagation of existing delamination cracks in the analysis of a double cantilever
beam (DCB) test. For more examples, we refer interested readers to [15].

5.1. Example 1: Recovery of transverse stresses

To verify the stress recovery method presented in Section 3, we study a simply supported beam subjected
to prescribed tractions at the top and bottom surfaces. The geometry of the beam is such that the length to
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Figure 2. a) Geometry of the simply supported beam used in the Example 1. b) Geometry of the DCB test
used in the Example 2.

width to thickness ratio is 5:2:1 and the beam has a [90 -45 45 0] layup, cf. Figure 2a. Furthermore, to
assess the recovery method, resulting stresses are compared to those from a reference 3D model. The shell
model consists of 100 shell elements and the 3D reference model of 43,200 solid elements, respectively.
The traction loads consists of a normal tensile component of p = 1.0 MPa on the bottom surface and shear
components of p and 0.5p in the longitudinal and lateral directions on the top surface. To further show
the potential of the method to account for interlaminar cracks, we place a delamination zone in the middle
interface and add an isotropic elastic cohesive law to transfer the load.

The resulting through-the-thickness variations of the important stress components, at a point L/3 from the
left support, are plotted in Figure 3. From the results it is clear that the in-plane stresses (σ11) are predicted
well using the shell model. It is also shown that the predictions of the transverse stress components (σ13
and σ33) are improved using the proposed recovery technique. In addition, the recovery match the boundary
conditions of the shear stresses very well, even though these are not explicitly enforced. To conclude, the
stress recovery technique shows significant improvements in the prediction of the transverse stresses, even
if it is not possible to reach exactly the same level of accuracy as a high-fidelity model. This should however
be viewed in the light of computational efficiency where it should be noted that, in this particular example,
the solid model requires 31 times as long CPU-time compared to the shell analysis, while additional cost of
performing the stress recovery is negligible.

5.2. Example 2: Crack propagation in double cantilever beam test

The double cantilever beam, illustrated in Figure 2b, consists of two plies with fibre directions along the
beam and has a length of L = 200 mm, it has a height of h = 3 mm and a width of w = 5 mm. The ply
material data are taken as: E1 = 126 GPa, E2 = E3 = 10 GPa, G12 = G13 = G23 = 8 GPa, ν12 = ν13 = ν23 =

0.29. The initial delamination crack of length a = 30 mm (marked 1© in Figure 2b) is modelled using an
initial enrichment with zero cohesive traction. Besides this, the first row of elements in the virgin material
(location marked 2© in Figure 2b) are also enriched, where the cohesive zone model adopted here and for
the subsequent crack propagation is the one proposed by Jansson and Larsson [16], with the following
interface properties: GIc = 218 J/m2 and σfn = 57 MPa. This way the model has a small region where the
damage evolution can be measured such that the propagation criterion in Eq. (17) can be evaluated. The
virgin part of the beam is modelled with an in-plane element size of 0.3 mm, while the outer part with
initial delamination has a coarser mesh. Finally, in the analysis, the free ends of the beam are subjected to
prescribed displacements in the vertical direction with a magnitude p and the resulting reaction forces are
calculated.

The influence of different damage levels rP is examined for three cases using a large expansion radius and a
load increment of 0.05 mm/step. The results from these analyses are in Figure 4a compared to a reference
case, where the entire beam interface is initially enriched. The analytical solution for DCB is indicated as
well. The results show that the solution of the fracture process is stable, indicating that the resolution using
two elements in the process zone is adequate. We can also conclude that the moment of propagation has
converged for damage initiation levels rP < 10−4. If this level is increased the propagation of the enrichment

J. Främby, M. Fagerström and J. Brouzoulis

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 7

−100 −50 0 50
−0.5

−0.25

0

0.25

0.5

σ11/p

x
3
/
h

−2 −1 0 1
−0.5

−0.25

0

0.25

0.5

σ13/p

x
3
/
h

−0.5 0 0.5 1
−0.5

−0.25

0

0.25

0.5

σ33/p

x
3
/
h

Figure 3. Resulting through-the-thickness stresses in Example 1. Stress components in reference (blue) and
shell (red dashed) models together with recovered transverse stresses (•) in analysis of simply supported
beam.
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Figure 4. Force-displacement response of DCB test using a) 5.9 mm expansion radius and different damage
thresholds and b) a fixed damage threshold and different expansion radii. Please note that in a) only a part
of the curve is shown to clarify the differences.

front will be postponed and the force passes the fracture force before the delamination propagates.

Further analyses using rP = 10−6 and different expansion radii RP are in Figure 4b compared to the reference
case and the analytical solution. Here we can observe that having an expansion radius of more than 6
mm leads to results close to the reference solution while shorter distances lead to over-prediction of the
maximum force. When the expansion radius is too short the delamination propagation between steps is
restricted, which results in an overly stiff response in this displacement controlled test. Based on this, we
recommend that the propagation radius should be at least ten times the size of the process zone for mode
I. And even for this case, close to 50 % computational time is saved compared to the reference analysis.
Having this in mind we conclude that even for a small problem like this where most of the nodes finally
become enriched, an adaptive method can save considerable amount of computational effort.

6. Conclusions

In this paper we propose an adaptive enrichment methodology for the modelling of multiple and arbitrarily
located delamination cracks in a laminated structure using an equivalent single-layer shell model. With
this approach, the additional computational expense, associated with the complicated fracture process in
laminated composites, can be limited while at the same time maintaining a high level of accuracy.

We can conclude that the adopted stress recovery method does improve the prediction of when to refine the
model; however, not to a degree such that the enrichments can be initiated when the interlaminar stresses
are close to the strength values. This should be viewed in light of the intended purpose of the stress recovery
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method, which is only to improve the prediction of when to refine the model. Thus, we only need to be
accurate enough such that this is done at approximately the right time and location.
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