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ABSTRACT 

Ceramic matrix composites (CMCs), such as SiC fiber-reinforced SiC, are a damage tolerance material 

in which high toughness is achieved through damage mechanism such as fiber bridging, fiber pullout, 

interfacial debonding followed by sliding, crack deflection. The purpose of this study is to extend the 

constrained conditional finite element method (CC-FEM) formulated in previous studies to the case of 

interfacial debonding problem with anisotropic friction. The accuracy of the CC-FEM was investigated 

by comparing with the general purpose FEM software (ANSYS). As a result, it was found that the 

friction force perpendicular to the loading direction did not occur clearly in ANSYS when an uniaxial 

compressive load was applied. On the other hand, it occurred in the analysis of CC-FEM. In general, 

the friction force in the actual phenomenon must work in the perpendicular direction because it 

extends in the transverse direction through Poisson’s effect. Therefore, it was estimated that the 

proposed CC-FEM gave a more accurate analysis. 

 

 

1. Introduction 

 

Ceramics are excellent in heat, abrasion and corrosion resistances, but the toughness and strength 

reliability are not enough due to their brittle nature. On the other hand, fiber-reinforced ceramic matrix 

composites (CMCs), such as SiC fiber-reinforced SiC, are a damage tolerance material in which high 

toughness is achieved through damage mechanism such as fiber bridging, fiber pullout, interfacial 

debonding followed by sliding, crack deflection [1]. From such an excellent property, CMCs are 

expected as a high-temperature structural material used in the field of aerospace in which conventional 

metals are difficult to be applied.  

In general, contact problems are solvable through computational algorisms such as penalty method 

and enlarged Lagrange method, which are installed in the software for finite element method (FEM). 

In these algorisms, the computation is repeatedly carried out until the amounts of sliding and/or 

overlapping between nodal-points reach to a given allowable value. Therefore, the computation time 

and precision depend on the value [2]. On the other hand, the constrained conditional finite element 

method (CC-FEM) is a mechanical model, in which the equivalence of nodal-point displacements and 
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the equilibrium of contact forces are given as contact conditions, i.e. constrained conditions, on the 

contact face. According to this model, the exact numerical solution is obtainable by just one time 

computation without any repetition. If this model is applied to the damage problem in CMCs, even 

complicated damage state including plural matrix cracks and fiber breaks could be solved by only one 

time without divergence. In the previous papers, we formulated CC-FEM in the cases of on- and off-

axial interfacial debonding problems [1, 3-5].  

The purpose of this study is to extend the CC-FEM to the case of two-dimensional interfacial 

debonding problem. After interfacial debonding, the fiber and matrix slide each other, and stop at the 

mechanically balanced state, at which the frictional resistances are not necessarily identical in any 

sliding direction on the contact face. In this case, the problem has to be formulated by considering the 

anisotropic friction [6]. The present paper shows the analysis method of CC-FEM of this case and 

compare it with general-purpose finite element analysis software ANSYS. 

 

 

2. Finite element model and method 

 

2.1 Stiffness equation including contact forces 

 

 Once a fiber is broken or matrix crack occurs, interfacial debonding occurs in a CMC material, 

and then the whole stiffness of the material is reduced, resulting in a non-linear behavior in the stress-

strain relation. For the analysis of this phenomenon, updated K matrix including damages such as fiber 

breaks and matrix cracks is incorporated into the conventional analysis [1]. In this situation, the 

principle of virtual work including contact forces is given, as follows: 
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where σij, εij, ip  and ui are components of stress, strain, body force and displacement in an elastic 

body, respectively. iT and iR  are surface and contact forces, respectively. C is a contact surface and Sσ 

is a mechanical boundary except C. The subscripts i and j correspond to x-, y- or z-direction, and δ 

represents the amount of variation. By discretizing Eq. (1) and defining the equivalent nodal force on 

nodes of each element, the stiffness equation crement {ΔQ} can be derived as an incremental form, as 

shown in Eq. (2) 

 

  }{}{}{ QfuK            (2) 

 

where [K] is the global stiffness matrix derived from the first term of Eq. (1), {Δu} is the nodal 

displacement increment, {Δf} is the load increment deriving from 2nd terms of Eq. (1), and {ΔQ} is 

the contact force  increment and treated as an unknown variable vector. 

 

2.2. Definition of interfacial contact states and conditions 

 

CC-FEM has applied for the model of axial symmetry [1, 3-5]. In this study, we develop a new 

model in order to extend it to three-dimensional version. We assume interfacial contact states as (a) 

bonding and (b) interfacial debonding. In the latter state, (b) interfacial debonding, the concept of 
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anisotropic friction is applied in order to increase the versatility of CC-FEM, in which the constrained 

conditions are given assuming that the friction coefficients in the x and y -directions are different. 

Figure 1 shows the schematic of such states, where double-nodes were assigned at the identical 

coordinate. Node 1 belongs to the fiber element, and node 2 belongs to the matrix one. These 

interfacial contact conditions are given as Eqs. (3)-(4): 

 

(a) Bonding 

When the interface is bonded without debonding as in Fig. 1(a), the continuities of displacement and 

the force balances are given as:  
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Where, Δu, Δv and Δw are displacement increments along x, y and z-directions. ΔRx, ΔRy and ΔRz are 

contact force increments along x, y and z -directions of nodes 1 and 2. 

 

 (b) Interfacial debonding 

When the interface is debonded, and slid along x and y -directions as in Fig. 1(b), the continuities of 

displacement and the force balances are given as: 
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Where, μx and μy are the coefficients of static friction in x- and y-directions, respectively. α is the 

relative ratio of ΔRx and ΔRy, and it is unknown at each double-nodes of the interface. In this study, 

‘appropriate α’ in each double-node was treated as a problem of optimization. That is to say, the 

‘appropriate α’ was decided by maximizing the frictional work Wf given as Eq. (5), based on the 

principle of maximum dissipation energy. 

 









 

n

i

yixiyixif uuRRW
1

2222
        (5) 

 

Where, n is the number of double-nodes. Each α is renewed using the genetic algorithm [7]. First, Wf
(1) 

is calculated by randomly assigned α. Similarly, next α is calculated from the average of each α of the 

largest Wf and the second largest Wf. Thus, the ‘appropriate α’ is found repeatedly with alternation of 

generations.  

 

 

2.3. Insertion of the interfacial contact conditions into the stiffness equation 

By inserting the interfacial contact conditions of Eqs. (3), (4) into the stiffness equation (Eq. (2)), 

the interfacial contact stiffness equation is given as: 

 

  }{}{ fuK cc             (6) 
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Where, [Kc] is the partly changed stiffness matrix by interfacial contact conditions, of which the detail 

is shown in the reference [1, 3-5], and {Δuc} is the nodal displacement vector which contains nodal 

contact force (e.g. ΔRx, ΔRy and ΔRz). From Eq. (6), {Δuc} can be calculated by the Gaussian 

elimination, and the nodal displacement {Δu} can be obtained by the continuities of displacement as in 

Eqs. (3), (4).  

 

 

 

 

 

 

 

 

 

 
                                                                  (a)                                                                       (b) 

Figure 1. Interfacial contact states (a) Bonding, (b) Interfacial shear debonding 

 

2.4. Element and boundary conditions 

 

Shape of the final model should be assumed here as a cylindrical shape, but, in order to 

confirm the validity of three-dimensional CC-FEM, the interface was assumed as a plane. Figure 2 

shows a model of the geometry and boundary conditions. Assuming that the final model is a 

cylindrical shape, the boundary conditions were defined as shown in Table 1.  

 

 

 

 
 

 

 

 

 

 

 

Figure 2. Finite element model 

 

 

Table 1. Boundary conditions 

 

 

 

 

 

 

 

 

Fixed in the x -direction Surface of x = 0  

Fixed in the y -direction Surface of y = 0 

Fixed in the z -direction Surface of z = 0 or z = zmax 

Displacement in the  x -direction Surface of x = xmax and Fiber side 
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3. Simulation results of CC-FEM and comparison with general-purpose finite element analysis 

ANSYS 

 

The results from CC-FEM and general-purpose finite element analysis software ANSYS are shown 

in Figs.3 and 4 (where, RV is the reference value). The present simulation treats the case that, all 

double-nodes at interface are debonding. The material constants used are as follows: Young’s modulus 

Ef = Em=200 GPa, Poisson’s ratio νf = νm=0.2 and the coefficient of static friction of x and y-directions 

μx=μy=0.5. 

From Figs. 3 and 4, it was found that the both displacement vectors of the fiber side are very 

similar, whereas the vectors of the matrix side show different behavior. The reason why ANSYS’s 

displacements in the y -direction is smaller than CC-FEM’s may be suspected such that ANSYS does 

not consider the frictional coefficient of the vertical direction to the loading direction in the case of 

single-axial load. Therefore, the contact condition shown in Eq. (4) was changed as Eq. (7).  

 

(b)’ Interfacial debonding 2 
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In this calculation, μx and μy were assumed as μx=0.5, μy=0. The model used was the same as shown in 

the above. The results are shown in Fig.5. The comparison between Figs. 3 and 5 shows a good 

agreement each other. Therefore, it is estimated that the friction coefficient in the direction 

perpendicular to the loading direction is not considered in ANSYS. In the actual phenomenon, 

however, the friction force has to work in y- direction because it extends in the transverse direction 

though Poisson’s effect. Therefore, it is estimated that the CC-FEM gives more accurate analysis. To 

verify the present results, as a future work, we intend to carry out the experiment of this phenomenon 

and compare the both results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 (a)                        (b) 

Figure 3. Displacement vectors at the interface by general-purpose finite element analysis software ANSYS. (a) fiber side, 

(b) matrix side.  
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(a)                        (b) 

Figure 4. Displacement vectors at the interface by CC-FEM. (a) fiber side, (b) matrix side.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                        (b) 

Figure 5. Displacement vectors at the interface by CC-FEM taking into account Eq. (7). (a) fiber side, (b) matrix side.  

 

 

4. Conclusion 

 

 In this study, we defined a new constrained conditional finite element method (CC-FEM) in 

order to extend two-dimensional model to three-dimensional version. We assumed interfacial contact 

states as (a) bonding and (b) interfacial debonding. In the latter state, anisotropic friction and genetic 

algorithm were introduced. The accuracy of this model was validated in comparison with the result of 

the general-purpose finite element analysis software ANSYS. ANSYS’s results showed that the matrix 

movement due to the friction force was smaller. In particular, the y-direction of the movement is too 

small. This is attributed to that ANSYS does not consider the vertical direction of the friction 

coefficient in the loading direction in the case of single-axis load. The friction force has in the actual 

phenomenon has to work in y- direction because of Poisson’s effect. Therefore, it was estimated that 

the CC-FEM gives more accurate analysis.  
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