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Abstract 
A methodology to develop experimental methods to measure cohesive laws is introduced. This 
methodology is based on the property of all configurational forces equilibrium acting on a specimen to 
be in equilibrium. Two applications are given. The first shows a method to measure the cohesive law 
for shear representing the mechanical behaviour of an adhesive layer. The second application is a 
method to measure the cohesive law for the formation of a kink-band in a unidirectional composite. It 
is concluded that the methodology is critically dependent on the ability to associate a pseudopotential 
to the inelastic properties of the deforming material where the fracture process takes place. The 
importance to clearly identify the material that is modelled with the cohesive zone is also stressed. 
 
 
1. Introduction 
 
The concept of configurational forces was introduced in the theory of elasticity by Eshelby (1951), cf. 
[1]. It has later been extended to inelasticity, for an overview cf. [2]. It provides almost unexplored 
possibilities for the development of experimental methods to measure cohesive laws associated with 
fracture. In the present paper, the concept is introduced and examples of developed test set-ups are 
given. These comprises methods to measure cohesive laws associated with fracture of adhesives, cf. 
[3], and kink-band formation due to compressive loading of a unidirectional (UD) composite, cf. [4]. 
The paper is organized with a brief recapitulation of the theory of configurational forces followed by 
examples of designed experimental methods to measure cohesive laws. 
 
2. Configurational forces and cohesive zones 
 
We limit ourselves to hyperelasticity with a strain energy density function U. In parts of a test 
specimen modelled with conventional continuum mechanics, the components of the stress tensor are 
given by /ij ijUσ ε= ∂ ∂  where ijε  is the components of the strain tensor. In parts modelled with 

cohesive zones, the components of the cohesive traction are given by /i iU δΣ = ∂ ∂  where iδ  is the 
separation vector. Thus, U depends explicitly on the position. Index notation is used with the lower 
case subscript indicating the coordinate; summation is to be taken over repeated indexes, and a comma 
indicates partial differentiation. The function U is allowed to vary in a restricted manner with the 
coordinates; it can be considered as two separate functions – one for the conventional continuum and 
another for the cohesive zone. A Cartesian coordinate system is used and the considered test 
specimens are essentially two-dimensional with x1 oriented along the cohesive zone and x3 out of the 
plane of the specimen.  
 
With the present orientation of the cohesive zone, the x2 components of the cohesive traction and the 
separation vectors are denoted σ and w, respectively; the x1 components are τ and v, respectively. For 
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short, they are denoted the peel (σ , w) and shear components (τ , v), respectively. The basic problem 
can be stated as: Provided data from measurements of an experiment is available, what is the cohesive 
law ( )wσ  or ( )vτ ; or in mixed mode loading, what is ( ),v wσ  and ( ),v wτ ? As shown here, 
equilibrium of configurational forces is used to design experimental methods to measure these 
relations. 
 
The configurational force PI on an object I in the direction xI is defined by 

I
I

Π∂
= −

∂
P

x
 

(1) 

where Π is the potential energy of the body. Coordinates are given in a Cartesian frame. Thus, any 
identifiable object in an elastic field that changes the potential energy if it is moved is, by definition, 
an object in this respect. Readily identifiable objects are boundaries, positions of load application and 
inhomogeneities in material properties. If all objects have been identified, Eq. (1) shows that the sum 
of all the configurational forces is zero since an infinitesimal repositioning of all objects in the same 
direction and by the same amount leaves the body in exactly the same state as its original state. Thus, 
the total variation of Π is zero and the configurational forces are in equilibrium. 
 
Some objects in elasticity are related to unbounded properties of the elastic fields. One such object of 
special interest here is a force F. Kelvin’s solution shows that the stress tends to infinity as the point of 
load application is approached, cf. e.g. [5]. Formally, the potential energy is un-bonded and a 
straightforward application of Eq. (1) is unfeasible. This difficulty is solved by splitting the fields into 
two parts, one associated with a force in an infinite body (i.e. Kelvin’s solution) and one part 
associated with the rest so that the displacement field, i.e. u = us + ua, where superscript s and u 
indicate Kelvin’s singular solution and the remainder, respectively. An evaluation, [6], of the 
configurational force PF in the x1 direction of a force F acting in the x2 direction yields 

FP Fθ=  (2) 

where a
,i juθ ≡ − . If θ cannot be considered small, θ is replaced with sin(θ) in Eq. (2), cf. [7]. More 

generally, the configurational force on object I in the x1 direction can be calculated using 

( )1 ,1 d
I

I i i
S

P Un Tu S= −∫  (3) 

where S is any closed surface confining only object I. It may include other objects provided these do 
not change the energy of the specimen if they are moved in the x1 direction, i.e. an object is allowed to 
reside inside S if its configurational force has components in the x2- and/or x3-directions but no 
component in the x1-direction. Moreover, n and T are unit outward normal and outward traction vector 
on S. 
 
Equation (3) provides the configurational force PC of a cohesive zone. First assume that the cohesive 
zone has a finite thickness h and imagine S to be a cuboid centred at the start of the cohesive zone. Let 
the dimension in the x3-direction, l3, coincide with the width b of the cohesive zone and l2 to be 
minutely larger than h so that the cuboid encapsulates the cohesive zone. Finally, shrink the length in 
the x1-direction, l1, to zero. Since T = 0 at the free edge of the cohesive zone, only the first term 
remains in Eq. (3). Assuming no variation out of the plane yields after a change of variables 

   
PC v,w( ) = b σ v, !w( )d !w

0

w

∫ +b τ !v,w( )d !v
0

v

∫  
(4) 

Now, h does not enter Eq. (4) and it is valid also in cases of cohesive zones without thickness. 
Equations (2) and (4) provides the foundation for the specimen configurations presented here. By 
designing specimens where the forces act in the x2-direction, only one cohesive zone is active in the x1-
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direction, and no other configurational forces contribute, equilibrium of these forces provides PC and 
after differentiation, the cohesive laws ( ),v wσ  and ( ),v wτ . Examples are provided below. 
 
3. Adhesive joints 
 
A generic specimen with an adhesive layer with thickness h is presented in [8], cf. Fig. 1. By 
equilibrium, two of the four acting forces can be expressed in the remaining two forces. By setting F3 
= F4 = 0, equilibrium yields F1 = F2 and a Double Cantilever Beam Specimen (CBS) results. By 
symmetry, this specimen yields a pure peel loading of the adhesive layer. By setting F1 = -F2 an End 
Notched Flexure (ENF) specimen results. By symmetry, this specimen loads the adhesive layer in pure 
shear. With F2 and F4 as reaction forces from supports, the Mixed Mode Bending (MMB) specimen 
results. Most of these specimens can be designed to provide stable crack growth and a gradual 
reduction of the acting loads during an experiment, cf. [9].  
 

  
 

Figure 1. Deformed generic specimen adapted from [8]. 
 
With cohesive zone modelling of the start of the adhesive layer, two alternative expressions can be 
derived for the configurational force on the cohesive layer with thickness h used to represent the 
adhesive. Equation (4) directly yields PC provided the cohesive law is known and if we measure w and 
v (indicated in Fig. 1) during an experiment. If the cohesive law is unknown, as is generally the case, 
the alternative expression for PC is derived from Eq. (3) by using S enclosing the complete specimen. 
Thus, S is the surface of a cuboid. The two surfaces with unit normal in the ±x3-direction do not 
contribute to PC. The first term in the integrand of Eq. (3) is identical zero since the normal of the 
surfaces do not have any component in the x1-direction and n1 = 0. Moreover, these surfaces are 
traction free and the second term in the integrand is also zero. Hence, these surfaces do not contribute 
to PC.  
 
The two surfaces with normal in the ±x1-direction can be designed to give negligible contributions to 
PC. No forces act on these surfaces. Thus, the second term in Eq. (3) is zero since the traction is zero. 
The first term can give contributions if the distance c between the point of load application and the 
free edge is too small. That is, if considerable stresses occur at the free edge. The contribution is easily 
predicted using FE-analysis and the geometry in Fig. 1 is exaggerated; smaller overhangs than 
indicated in the figure can be tolerated. 
 
On the remaining surfaces with normal in the ±x2-direction, the first term in Eq. (3) does not 
contribute. However, each of the acting forces gives a contribution to PC according to Eq. (2). This 
yields the alternative expression 

C 1 1 2 2 3 3 4 4P F F F Fθ θ θ θ= − − +  (5) 
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Now, by setting the two alternative expressions equal, i.e. Eqs. (4) and (5), the cohesive law can be 
derived by proper differentiation of the resulting expression provided v, w, F1, F2, F3, and F4 are 
measured continuously during an experiment. Note that two of the four forces are directly given from 
the remaining two by equilibrium. 
 
An example is provided in [10] where the cohesive law in shear is measured with an ENF-specimen 
for the epoxy adhesive DOW-Betamate XW-1044-3 with h = 0.2 mm. In this case, F3 is denoted F and 
F1=-F2 and F4 are reaction forces. After utilizing this and setting Eqs. (4) and (5) equal, we arrive at 

( )1 3 4
1 1F F F
b v

τ η θ θ η θ
∂
⎡ ⎤= − + −⎣ ⎦∂  

 
(5) 

where η is defined in Fig. 1 and where θ2 = θ1 by symmetry. Figure 2a shows the measured 
configurational force per unit width J ≡ PC/b vs. the shear deformation v. The curve shows a first 
maximum at about 2.1 kN/m. This value corresponds to the shear stress equal to zero at a critical shear 
deformation of about vc = 0.14 mm, cf. Fig. 2b. Thus, at this stage a crack has formed and the fracture 
energy equals 2.1 kN/m. The maximum stress is about 22 MPa. The details of the experiments are 
given in [10]. 
 

 5 Copyright © 2009 by ASME 
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Figure 10: Load displacement curve from experiment. 
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Figure 11: Evolution of J during the experiment. 
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Figure 12: Cohesive law measured in the experiment. 

The cohesive law is very similar to the ones reported in [17] 
using an alternative technique that demanded a 1 m long test 
specimen. The maximum stress is about 21.7 MPa; in [17] it is 
reported to vary between 21.8 and 29.5 MPa. 

 
 

DISCUSSION 
A new method to measure cohesive laws in shear is developed. 
As compared with earlier methods, cf. e.g. [17], the present 
method allows for plastic deformation of the adherends and do 
not rely on accurate data for the properties of the adherends. 
The principal advantage of the present method is, however, the 
possibility to use much shorter specimens. 

CONCLUSIONS 
Cohesive models provide convenient methods to simulate 
fracture of adhesively bonded structures. The models are 
computationally attractive. A number of methods have been 
developed to deduce or measure the cohesive law during the 
past twenty years. Of these methods, the ones based on the path 
independent J-integral are especially attractive, principally 
those that do not rest on too specific assumptions on the 
behaviour of the material of the test specimen.  

Here, a new method for measuring shear properties is 
developed. As compared with our earlier method, the present 
method allows for much smaller specimens and some plastic 
deformation of the adherends. Both simulations and 
experiments show promising results. The method can easily be 
extended to large deformations by replacing θi with sin(θi) (i = 
1,2,3), in Eqs. (4,5). 

NOMENCLATURE 
a Crack length [m] 
b Out of plane thickness of adherends [m] 
C Integration path [m] 
F Load [N] 
h Height of adherend [m] 
J Energy release rate, J-integral [N/m] 
Jc Fracture energy [N/m] 
l, L Length of specimen [N] 
M Bending moment [Nm] 
n Geometrical position [m] 
t Thickness of adhesive layer [m] 
U Strain energy density [N/m2] 
v Shear deformation of adhesive layer [m] 
w Elongation of adhesive layer in peel [m] 
T Traction vector [N/m2] 
u Displacement vector [m] 
α Shape factor [-] 
β Angle [-] 
∆ Load point displacement [m] 
σ, τ Peel and shear cohesive stresses [N/m2] 
θ Rotation of loading point [-] 
θi Rotation of loading points (i=1,2,3) [-] 
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Figure 2. a) Measured configurational force per unit with vs. v; b) Derived cohesive law, [10]. 
 

 
4. Compressive fracture of composite 
 
Compressive loading in the fibre direction of high-performance composite materials is often limited by 
the formation of a kink-band. This consists of a thin zone of collapsed fibres that extends through the 
thickness of a ply and has a considerable length in the plane of the composite. Thus, the geometry of 
the kink-band suggests that it can be modelled by a cohesive zone. A method to measure the cohesive 
law associated with the formation of a kink-band in a UD-composites is developed based on the 
equilibrium of configurational forces, cf. [4]. Figure 3 illustrates the main features of the specimen. 
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Figure 3. Main features of the specimen developed in [4]. 
 
The material is HTS carbon fibre in a RTM6 resin. One of the main difficulties to measure the 
cohesive law corresponding to kink-band formation in a UD-composite is to transmit the load F into 
the intended position of the kink-band without initiating in-elastic response of the material in other 
positions than at the kink-band. To this end, cross-laminates are used in the upper and lower parts of 
the specimen, i.e. the parts with the constant thicknesses, cf. Fig 3b. By ply-dropping and machining, a 
waist is formed at the symmetry line y = 0. The wedge-shaped parts of the specimen constitute objects 
with configurational forces in the y-direction. However, no horizontal configurational forces are 
associated with the wedges. The left and right boundaries L and R are both associated with 
configurational forces, however, by choosing the lengths Lleft and Lright large enough, the stresses at 
these boundaries will be small and the associated configurational forces can be neglected. The 
intended position for the kink-band is centred in the notch, cf. Fig. 3. Figure 4 shows a close-up of the 
notch. 
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Figure 4. Close-up of notch with sub-areas, [4]. 
 

A configurational force Pnotch is associated with the notch. Equation (3) gives 

   

Pnotch = U d ydz
AA'
∫∫ = U d ydz

AA'∉BB'
∫∫

Pr

! "## $##

+ U d ydz
BB'∉CC'
∫∫

Pb

! "## $##

+ U d ydz
CC'
∫∫

Pw

! "# $#

 (6) 

where the first integral results from choosing S in Eq. (3) as a closed surface closely adhering and 
enclosing the notch in the x-y-plane; the part of the surface with normal in the ±x3-direction can be 
chosen planar – as explained above, they do not contribute to Pnotch. The second equality follows from 
a straight-forward split of the integral to a sum of parts from the different sub-areas identified in Fig. 
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4. The configurational forces Pr and Pb are evaluated from the experiments by utilizing our knowledge 
of the elastic properties of the material and measurements of the strain field close to the boundary 
using a Digital Image Correlation (DIC) system. The third configurational force of the notch Pw 
corresponds to the waist, cf. Fig. 4. By equilibrium of the configurational forces, Pw is written 

w load r bP P P P= − −  (7) 

where Pload is given by Eq. (2) as F(θ1+θ2), cf. Fig. 3. A cohesive law is now associated with the waist. 
Equation (4) gives the corresponding configurational force 

   
Pw ww( ) = b σ !ww( )d !ww

0

ww

∫  
(8) 

where ww is the compression of the waist. Setting Eqs. (7) and (8) equal, σ(ww) follows after 
differentiation. The cohesive law associated with the kink-band with measured height hcz ≈ 200 µm 
results after assuming a uniaxial state of stress at the boundary of the waist. Thus, with we denoting the 
compression of the waist outside the kink-band and E* denoting the measured elastic stiffness of the 
waist, 

( )w cz
e *

h h
w

E
σ −

= . 
(9) 

The cohesive law is finally given by σ(w) = σ(ww-we). Figure 5 shows the results from one of the 
experiments reported in [4]. 
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Figure 5. Measured cohesive law for waist σ(ww) (dotted curve) and for the kink-band σ(w) (solid 
curve), [4]. 

 
It is noted that the fracture energy is about 25 kN/m, the maximum compressive stress is about 1.5 
GPa and the compression at failure is about 50 µm. It should be noted that these data are associated 
with the formation of a kink-band in a less constrained state than in a cross-ply. With stiff plies outside 
the ply that forms the kink-band, the fibres will probably kink out more in the plane of the ply. For a 
detailed description of the experiments, the reader is referred to [4]. 
 
The present design succeeded in forming the kink-band in the intended position without introducing 
initial imperfections. A major challenge with the set-up is the measurement of the fields in the notch. 
The DIC-system is not ideally suited to measure strains close to an edge. Another challenge is to 
achieve a stable formation of the kink-band. A redesigned specimen has now been tested that provides 
better stability. The data remains to be evaluated. 
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5. Concluding remarks 
 
Measurement of material data is always based on a more or less explicitly stated theory. The critical 
point in the present class of methods is the ability to associate a strain energy density U with the 
inelastic properties of the actual fracture process. At first sight, this might seem unfeasible. However, 
the difference between an inelastic and an elastic material is not observable from its stress-strain 
behaviour before unloading takes place. In non-linear fracture mechanics, the notion pseudopotential 
has been coined to distinguish between the potential of an elastic material and the (pseudo-)potential 
used in the analysis of the material cf. e.g. [11]. 
 
The two experimental set-ups presented here benefits from a relatively straight-forward identification 
of the material represented by the cohesive zone. With adhesive layers, the thickness of the layer 
constitute a well-defined definition of the height of the cohesive zone; with kink-band formation does 
the height of the kink-band provides a similar definition. Kink-band formation do, however, often 
show an increase in height with further loading. Thus, the height of the kink-band may increase and 
this should be considered in the development of a cohesive model of the phenomena. An example of a 
more challenging problem is the measurement of cohesive properties for delamination of a composite, 
cf. e.g. [12]. Here, it might be alluring to choose the resin rich material between the plies to be 
represented by the cohesive zone. However, this will often exclude parts of the material volume where 
the fracture process is active from the cohesive zone. Properly evaluated, this would lead to a too small 
fracture energy. 
 
The methodology presented here have been extended to other load cases and to some extent to other 
problem areas. The results, i.e. the cohesive laws, are readily useable with some commercial FE-codes 
that provide cohesive finite elements. With these, strength analysis is reduced to a non-linear stress 
analysis. 
 
It should be noted that both presented methods presented here are based on the application of 
transversal forces on test specimens. An alternative class of techniques where the load is applied by 
bending moments are developed by Sørensen and co-workers, cf. e.g. [13].  
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