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Abstract 

This paper aims to build a damage model for linear viscoelastic UD (unidirectional) composites. The 

damage representation for the corresponding elastic UD composites with an array of dispersed matrix 

cracks was derived from Li’s work based on continuum damage mechanics (CDM). The elastic-

viscoelastic correspondence principle was used to gain the damage representation for corresponding 

linear viscoelastic UD composites in Laplace domain. A damage evolution law for linear viscoelastic 

materials was built both on Weibull distribution of defects and on an assumption that damage only 

occoured in elastic part. An example of constants strain rate was taken to demonstrate how to apply 

this model. Time temperature superposition principle (TTSP) used in this model will be obtained in 

future work.  

 

 

1. Introduction 

 

Some fibre reinforced composites display time dependent behaviour, since the matrix is viscoelastic. 

The constitutive equations for this specific material can be written in an integral form according to the 

well-known Boltzman superposition principle. The damage mechanisms of a viscoelastic material 

could be quite different from that of an elastic material. Schapery has carried out lots of work on 

deformation, fracture, and damage of linear/non-linear viscoelastic behaviour of monolithic and 

composite materials by using the thermodynamics of irreversible processes[1-8]. Kumar [9, 10] has 

built a continuum damage model for linear viscoelastic composite materials upon Talreja’s research in 

CDM. Zocher [11] has analyzed the stress of a matrix-cracked viscoelastic laminate. Both Kumar and 

Zocher focused on laminates and failed to identify the damage evolution, which is a gap in CDM for 

viscoelastic materials. 

 

In this paper, we wish to build damage representation and damage evolution for UD composites, the 

matrix of which is linear viscoelastic with a view that fatigue tests of composites can then be 

accelerated by  combining TTSP with this damage model. 

 

 

2. Correspondence Principle 
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In the viscoelasticity literature, the viscoelastic correspondence principle (CP) is normally referred to 

corresponding relationship between linear elastic problem and Carson’s transformed linear viscoelastic 

problem.  

 

For elastic materials, the constitutive equation is a linear relationship between stress and strain, and the 

generalized Hooke’s law relating stresses to strains can be written in contracted notation [12] as 

 𝜎𝑖 = 𝐶𝑖𝑗𝜖𝑗     𝑖, 𝑗 = 1,… ,6 (1) 

Where 𝜎𝑖 are the stress components, 𝐶𝑖𝑗 is the stiffness matrix, and 𝜖𝑗 are the strain components. For a 

linear viscoelastic and non-aging material, the constitutive equations can be written in an integral form 

based on the well-known Boltzman superposition principle as 

 𝜎𝑖𝑗 = ∫ 𝐶𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝑡

0

𝜕𝜖𝑘𝑙(𝜏)

𝜕𝜏
𝑑𝜏 

(2) 

Or, inversely 

  𝜖𝑖𝑗 = ∫ 𝑆𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝑡

0

𝜕𝜎𝑘𝑙(𝜏)

𝜕𝜏
𝑑𝜏  

(3) 

𝐶𝑖𝑗𝑘𝑙 and 𝑆𝑖𝑗𝑘𝑙 are relaxation modulus tensor and creep compliance tensor, respectively. Take Laplace 

transform for both sides of (2) and (3) and apply the convolution theorem, we get 

  �̅�𝑖𝑗 = 𝐶�̅�𝑗𝑘𝑙 ∙ (
𝜕𝜖𝑘𝑙(𝜏)

𝜕𝜏
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝐶�̅�𝑗𝑘𝑙 ∙ (−𝜖𝑘𝑙(0) + 𝑠𝜖�̅�𝑙) = �̃�𝑖𝑗𝑘𝑙𝜖�̅�𝑙 (4) 

  𝜖�̅�𝑗 = 𝑆�̅�𝑗𝑘𝑙 ∙ (
𝜕𝜎𝑘𝑙(𝜏)

𝜕𝜏
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑆�̅�𝑗𝑘𝑙 ∙ (−𝜎𝑘𝑙(0) + 𝑠�̅�𝑘𝑙) = �̃�𝑖𝑗𝑘𝑙�̅�𝑘𝑙 (5) 

Where the Laplace transform 𝑓̅(𝑠) of a function 𝑓(𝑡) is defined as  

  𝑓̅(𝑠) ≡ ℒ{𝑓(𝑡)} ≡ ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

 (6) 

and �̃�𝑖𝑗𝑘𝑙, the Carson transform of 𝐶𝑖𝑗𝑘𝑙, is defined as �̃�𝑖𝑗𝑘𝑙 ≡ 𝑠𝐶�̅�𝑗𝑘𝑙 and �̃�𝑖𝑗𝑘𝑙 ≡ 𝑠𝑆�̅�𝑗𝑘𝑙. 

 

After taken the Laplace transformation, the integral constitutive equations transform to purely 

algebraic equations in the Laplace domain. (4) and (5) are analogous to the linear elastic constitutive 

equations except that they now relate to Laplace transformed stresses and strains. The constitutive 

equation of a linear viscoelastic material is time dependent. Since the Laplace transformation affects 

time but not spatial parameters, the corresponding viscoelastic operators obey analogous relations in 

the Laplace domain [13]. If we obtain the solution for an elastic problem, then we can get the solution 

for the corresponding viscoelastic problem by replacing all the material properties appearred in the 

elastic solution by their Carson transforms. The solution is thus obtained  in the Laplace domain and 

needs to be inverted to obtain the time domain solution. This is a well-known correspondence 

principle of linear viscoelasticity theory [14]. 

 

 

3. Damage Representation 

 
3.1. Damage Representation for Elastic UD Composites 

 

Based on continuum damage mechanics (CDM), Li [15] obtained an expression for stiffness modulus 

of UD composites with matrix cracks. In his work, the following three assumptions are commonly 

employed explicitly or implicitly in damage theories: 
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(1) The virgin material is homogeneous so that the heterogeneity between reinforcing fibres and 

the matrix will be neglected; 

(2) The virgin material is transversely isotropic. The damage to it takes a form of a single array of 

cracks, small in size but large in number, with a common orientation such that the damaged 

material demonstrates an orthotropic behaviour effectively; 

(3) The matrix cracks concerned are all mathematical cracks under an unloaded condition and the 

material around the cracks is free from any initial stresses. 

 

The Compliance of UD composites can be expressed as 

  [𝑆0] =

[
 
 
 
 
 

1 𝐸1
0⁄

−𝜈12
0 𝐸1

0⁄

−𝜈12
0 𝐸1

0⁄
0

0

0

  

1 𝐸2
0⁄

−𝜈23
0 𝐸2

0⁄
0

0

0

  
1 𝐸2

0⁄
0

0

0

 
1 𝐺23

0⁄
0

0

   

𝑆𝑦𝑚𝑚.

1 𝐺12
0⁄

0

   

1 𝐺12
0⁄ ]

 
 
 
 
 

 (7) 

Where 𝐺23
0 =

𝐸2
0

2(1+𝜈23
0 )

. 

 

For the particular damage mode, matrix cracks have a common orientation with crack surfaces parallel 

to the fibres direction (axis 1). The damage is described by the stiffness reduction in direction 2. Then 

  𝐸2 = 𝐸2
0(1 − 𝐷) (8) 

Then the compliance with the damage of matrix cracks in direction 2 is 

  

[𝑆]

=

[
 
 
 
 
 
 

1 𝐸1
0⁄

−𝜈12
0 𝐸1

0⁄

−𝜈12
0 𝐸1

0⁄

0

0
0

  

1 [𝐸2
0(1 − 𝐷)]⁄

−𝜈23
0 𝐸2

0⁄

0

0
0

  
1 𝐸2

0⁄

0

0
0

 
1 [𝐺23

0 (1 −
1

2(1 + 𝜈23
0 )

𝐷)]⁄

0
0

   

𝑆𝑦𝑚𝑚.

1 𝐺12
0⁄

0

   

1 [𝐺12
0 (1 − 𝑘𝐷)]⁄ ]

 
 
 
 
 
 

 

(9) 

The UD composites become orthotropic after undergoing damage and their properties can be derived 

from engineering constants of undamaged UD composites and damage variable a 

s 

  

𝐸1 = 𝐸1
0   𝐸2 = 𝐸2

0(1 − 𝐷)   𝐸3 = 𝐸3
0 (= 𝐸2

0) 

𝜈12 = 𝜈12
0   𝜈13 = 𝜈13

0  (= 𝜈12
0 )  𝜈32 = 𝜈32

0  (= 𝜈23
0 ) 

𝐺13 = 𝐺13
0  (= 𝐺12

0 )   𝐺23 = 𝐺23
0 (1 −

1

2(1+𝜈23
0 )

𝐷)    𝐺12 = 𝐺12
0  (1 − 𝑘𝐷) 

(10) 

 

3.2. Damage Representation for viscoelastic UD Composites 

 

The damage representation of elastic UD composites can be extended to the viscoelastic case by 

replacing the engineering constants by the Carson transformation of corresponding creep compliance. 

  

[�̃�]

=

[
 
 
 
 
 
 

1 �̃�1
0⁄

−𝜈12
0 �̃�1

0⁄

−𝜈12
0 �̃�1

0⁄
0

0
0

  

1 [�̃�2
0(1 − �̂�)]⁄

−𝜈23
0 �̃�2

0⁄

0

0
0

  
1 �̃�2

0⁄

0

0
0

 
1 [�̃�23

0 (1 −
1

2(1 + 𝜈23
0 )

�̂�)]⁄

0
0

   

𝑆𝑦𝑚𝑚.

1 �̃�12
0⁄

0

   

1 [�̃�12
0 (1 − 𝑘�̂�)]⁄ ]

 
 
 
 
 
 

 

(11) 
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Where  �̂� = 1 − �̃�2 �̃�2
0⁄ . 

If we obtain the relaxation moduli of undamaged viscoelastic UD composites and apply Carson’s 

transformation, then we can get the damage representation of viscoelastic UD composites in Laplace 

domain. Damage variable �̂�  is controlled by damage evolution law and 𝑘  can be gained from 

experiments. 

 

 

4. Damage Evolution Law 

 

4.1. Damage Evolution for Linear Elastic Materials 

 

After obtaining damage representation of linear viscoelastic composites, we can further consider how 

damage evolves. Like damage representation, the damage evolution can be started from elastic case.  

 

Suppose there is a representative volume element (RVE) in a UD composite. There are a large number 

of different size/level defects in this RVE and the sizes/levels of the defects are described by the 

sensitivity of effective stress which can develop the defects into damage. The probability density of 

these defects can be described by the Weibull distribution. 

  𝑑(𝜎𝑒; 𝜆, ℎ) = {
ℎ

𝜆
(
𝜎𝑒

𝜆
)
ℎ−1

𝑒
−(

𝜎𝑒
𝜆

)
ℎ

         𝜎 ≥ 0

0                                       𝜎 < 0

 (12) 

Where ℎ and 𝜆 are constants, effective stress is defined as 

  𝜎𝑒 =
𝜎

1 − 𝐷
 (13) 

Then  

  𝐷 = ∫ 𝑑
𝜎𝑒

0

d𝑥 = 1 − 𝑒
−(

𝜎𝑒
𝜆

)
ℎ

 (14) 

(14) can be the damage evolution law for elastic case.  

 

 

4.2. Damage Evolution for Linear Viscoelastic Materials 

 

Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when 

undergoing deformation. The most validated mathematical model to describe viscoelasticity in 1 

dimensional is the Wiechert model 

 

Figure 1: The Wiechert model. 

A B 
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And the relaxation modulus for this model is 

  𝐸𝑟𝑒𝑙(𝑡) = 𝑘𝑒 + ∑𝑘𝑗 𝑒𝑥𝑝(−
𝑡

𝜏𝑗
)

𝑗

 (15) 

During deformation, the energy release in viscoelastic materials can be divided into two parts, one is 

energy released in developping new surface in elastic part, the other is energy dissipated in the form of 

heat in viscous part.  

 

We assume in this paper that the damage only happen in elastic part (part A). When the effective stress 

applied on spring 𝑘𝑒  is beyond the limit, the damage occurs. When effective stress applied on 𝑘𝑒 

increases, the corresponding damage evolves. When the spring 𝑘𝑒 fails, the whole system will fail. 

Then the relaxation modulus with damage can be defined as  

  𝐸𝐷(𝑡) = (1 − 𝐷)𝑘𝑒 + ∑𝑘𝑗 𝑒𝑥𝑝 (−
𝑡

𝜏𝑗
)

𝑗

 (16) 

Where 𝐸𝐷(𝑡) can be 𝐸2(𝑡) (transverse modulus) in our damage representation in 3 dimension and 𝐷 

can be substituted by (14). Then  

  �̃�2  = 𝑒
−(

𝑘𝑒𝜖
𝜆

)
ℎ

𝑘𝑒 + ∑
𝑘𝑗𝑠

(𝑠 +
1
𝜏𝑗

)𝑗

 (17) 

Then  

  �̂�  = 1 −
�̃�2 

�̃�2
0 = [1 − 𝑒

−(
𝑘𝑒𝜖
𝜆

)
ℎ

] 𝑘𝑒 𝑘𝑒 + ∑
𝑘𝑗𝑠

(𝑠 +
1
𝜏𝑗

)𝑗

⁄  (18) 

Where 𝜖 can be the function of time 𝑡. We can put �̂� back to (11) to get the complete damage model 

for linear viscoelastic UD composites. 

 

The stress applied to a viscoelastic material can be expressed by using the famous Boltzman 

superposition principle as 

  

𝜎 (𝑡) = 𝐸𝐷(𝑡)𝜖0 + ∫ 𝐸𝐷(𝑡 − 𝜏)
𝜕𝜖(𝜏)

𝜕𝜏
d𝜏

𝑡

0

 

= (1 − 𝐷)𝑘𝑒 [𝜖0 + ∫
𝜕𝜖(𝜏)

𝜕𝜏
d𝜏

𝑡

0

] 

+∑𝑘𝑗 𝑒𝑥𝑝 (−
𝑡

𝜏𝑗
)

𝑗

𝜖0 + ∫ ∑𝑘𝑗 𝑒𝑥𝑝(−
𝑡 − 𝜏

𝜏𝑗
)

𝑗

𝜕𝜖(𝜏)

𝜕𝜏
d𝜏

𝑡

0

 

(19) 

(1 − 𝐷)𝑘𝑒 [𝜖0 + ∫
𝜕𝜖(𝜏)

𝜕𝜏
d𝜏

𝑡

0
] should be the stress applied to the elastic part, then 𝑘𝑒 [𝜖0 + ∫

𝜕𝜖(𝜏)

𝜕𝜏
d𝜏

𝑡

0
] 

is the effective stress in the elastic part and the damage evolution is controlled by 𝑘𝑒 [𝜖0 + ∫
𝜕𝜖(𝜏)

𝜕𝜏
d𝜏

𝑡

0
].  

 

We can take constant strain rate test for example. If a static test for viscoelastic material is controlled 

by constant strain rate 𝑎, then (19) will transform into  

  𝜎 (𝑡) = (1 − 𝐷)𝑎𝑘𝑒𝑡 + 𝑎 [∑𝑘𝑗𝜏𝑗
𝑗

− ∑𝑘𝑗𝜏𝑗
𝑗

𝑒𝑥𝑝 (−
𝑡

𝜏𝑗
)] (20) 
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And the damage variable 𝐷 from (14) will be  

  𝐷 = 1 − 𝑒
−(

𝑘𝑒𝜖
𝜆

)
ℎ

= 1 − 𝑒
−(

𝑎𝑘𝑒𝑡
𝜆

)
ℎ

 
(21) 

Then (21) can be substituted into (20) to obtain stress 𝜎 with damage evolution consideration duly 

incorporated 

  𝜎 (𝑡) = 𝑒
−(

𝑎𝑘𝑒𝑡
𝜆

)
ℎ

𝑎𝑘𝑒𝑡 + 𝑎 [∑𝑘𝑗𝜏𝑗
𝑗

− ∑𝑘𝑗𝜏𝑗
𝑗

𝑒𝑥𝑝 (−
𝑡

𝜏𝑗
)] (22) 

The constants 𝑘 and 𝜆 in Weibull distribution are specific properties of certain materials which can be 

obtained from experiment. Then damage evolution with certain constant strain rate is controlled by 

time 𝑡.  

 

 

5. Application 

 

In this paper, we gained both analytical solution for damage variable 𝐷 and damage-evolution-varying 

stress. However, it is not explicit enough for us to understand how damage evolves. We can bring in 

specific viscoelastic properties to get a clear picture of damage evolution. Thus we introduce 

viscoelastic properties of composite from exist paper [10], in which the viscoelastic properties of 

laminate composite were described by a Prony series (Wiechert model) as table 1. 

 

Table 1 Prony series representation of relaxation modulus 

   𝐸𝑟𝑒𝑙  
(GPa) 

 

 𝑗 𝑘𝑗 𝜏𝑗 𝑘𝑒 = 154.06 

 1 0.0436 0.0009  

 2 0.0478 0.0096  

 3 0.1011 0.2022  

 4 0.2087 4.174  

 5 0.4125 82.49  

 6 0.7387 1447  

 7 1.162 23250  

 8 1.266 253200  

 9 1.284 2568000  

 10 0.3801 7602000  

 11 1.081 216300000  

 

For the purpose of illustration, ℎ  and 𝜆  are given the value of 0.5 and 8 respectively. Damage 

evolution curve is described by (21). Then damage variable 𝐷 varying with strain 𝜖 can be illustrated 

as Figure 2. 

 

From (21) and Figure 2, we can find that damage evolution is controlled by strain. It should be noted 

that failure here is defined as a situation in which the damage variable 𝐷 is approaching to 1. The 

stress applied in elastic part is described by the first part of (22) as 

  𝜎𝑘𝑒
= 𝑒

−(
𝑘𝑒𝑎𝑡

𝜆
)
ℎ

𝑘𝑒𝑎𝑡 = 𝑒
−(

𝑘𝑒𝜖
𝜆

)
ℎ

𝑘𝑒𝜖 (23) 

which is also controlled by strain. Then the stress applied in elastic part varying with strain can be 

illustrated as Figure 3. 
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Figure 2 Damage variable varies with strain      Figure 3 Stress applied on elastic part varies with strain 

 

The extremum can be gained from 

  
d𝜎𝑘𝑒

d𝜖
= 0 (24) 

In this specific example, we can get that stress applied in elastic part will reach the maximum stress 

when 𝜖 = 0.2077. Then the failure of whole material can be defined in this strain. 

 

We can set three loading rates at 1mm/min, 0.01mm/min and 0.0001mm/min, and the test time are 

correspondingly 0.2077min, 20.77min and 2077min. Then all of three tests have same strain and same 

damage evolution. Stress strain curves of all of three tests are expressed as Figure 4. 

 

From Figure 4 we can see the failure stress (corresponding strain is 0.2077) is getting smaller when 

loading rate is getting smaller. Then a curve of failure stress varying with testing time can be made as 

Figure 5. 

       
Figure 4 stress strain curve with different loading rates     Figure 5 Failure stress varying with testing  

                                                                                                   time 

In the test of constants strain rate of linear viscoelastic composites, different loading rates will lead to 

different test time. The lower loading rate is,  the longer test time will be. If we want to obtain the 

information of failure stress and testing time from experiments, it could be a time-consuming, high-

cost and even impossible task. However, from Figure 5 we can directly acquire the failure stress at any 

test time. The details of Figure 5 are controlled by constants 𝑘𝑒, ℎ and 𝜆. So we can imagine that if we 

get value of ℎ and 𝜆 from experiments, we can make more accurate prediction of damage evolution 

and failure stress at different loading rates. Miyano gained the similar curve of failure stress versus 

𝜖 = 0.2077 
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time by using time-temperature superposition principle, and we can also put the temperature effects 

into our damage model and use the time-temperature superposition principle in the future. 

 

 

6. Conclusion 

 

Firstly, A CDM based damage representation based on Li’s work is presented in this paper to model 

the effects of a specific and fixed level of damage in the linear viscoelastic UD composites. Then the 

damage evolution law of elastic case was obtained from the Weibull distribution of sensitivity of 

defects probability density to effective stress. Finally, the damage evolution law of linear 

viscoelasticity was gained from assumptions that linear viscoelasticity was described by the Wiechert 

model and the damage only evolves in elastic part. At last an example of constants strain rate was put 

into this model to check the feasibility of this damage model. Temperature effects on this model will 

be discussed in future work. 
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