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Abstract
The simulation of the nonlinear mechanical behaviour of bonded joints requires the definition of very fine
meshes and non-linear material models that may increase a lot the computational time and effort needed
for the prediction of the failure loads. Therefore, the incorporation of advanced numerical simulation
tools in the design process is usually not possible. For these reasons, it is of high interest the development
of quick design tools, based for example on analytical models, with a very low computational effort and
with a reasonable accuracy for the prediction of the mechanical behaviour of bonded joints. In this
work, this point is addressed for DCB bonded joints with flexible and stiff adhesives and/or thick and
thin adhesive layers. An analytical model based on beam theory, an elastic Winkler foundation model
and combined with a progressive damage model based on the cohesive zone approach is presented. The
general elastic foundation model recently developed by the authors [1] has been enhanced with a cohesive
zone model formulation for the prediction of the mechanical behaviour of adhesive joints [2]. The model
is implemented in Matlab and can predict the whole load- displacement curve of a DCB specimen in few
seconds. Moerover, their capability to accurately predict the failure load of DCB bonded joints and other
joint configurations is demonstrated. A comparison of the prediction of the model with a finite element
simulation using cohesive elements also demonstrates the reliability of the model and the comparison on
the computational time, highlights the benefits of the presented model.

1. Introduction

The increase of new materials in modern industry is a challenge for joint processes on assembled parts.
Different techniques are used with this purpose but in recent years adhesively bonded joints have been
of special interest due to the advantages when different materials are bonded together [1]. In the last
decades, numerous analysis methods have been specially developed for the design of adhesive bonded
joints, nevertheless there is not still a general model valid for any kind of adhesive. Advanced compu-
tational techniques, such as the finite element method (FEM), are becoming the principal tools used for
designing adhesive joints, however analytical models remain of interest to designers due to their ability
to provide fast calculations.

There are different analytical models to predict the elastic behaviour and failure of adhesive joints [2,
3]. These models generally make assumptions and are limited to certain loading conditions and failure
modes. Under mode I loading, the double cantilever beam (DCB) test is a common setup to study
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the failure process on adhesive bonded joints. The simplest DCB analytical model is based on simple
beam theory, assuming a clamped condition at the crack front of the specimen and crack growth is
predicted based on linear elastic fracture mechanics (LEFM) approaches, i.e., when the energy release
rate available at the crack tip reaches the fracture toughness of the adhesive. However, this approach
is limited to very stiff adhesives and thin adhesive layers, and does not describe the true deflection of
the specimen arms near the crack front. In order to improve the estimation of the stiffness, correction
factors have been incorporated to the formulation [4] (Corrected Beam Theory data reduction method).
But these approaches are limited to very thin adhesive layers, whose elastic contribution is dismissed in
the formulation.

Additionally, enhanced DCB models have been proposed in the literature incorporating interface elas-
ticity into the model using Winkler elastic foundation beam theory [5–9]. With these models the energy
release rate is obtained as a function of an equivalent crack and the apparent Young’s modulus of the
adhesive. To obtain the apparent Young’s modulus different approaches are considered. One that has
enjoyed great success is the work of Jumel et al. [7] for thin adhesive layers, which assumes a transver-
sal plane strain condition for the adhesive. However, the model has some limitations such as it is only
applicable in cases when the thickness of the adhesive is small to and the material is compressible. To
solve these limitations, a general model was recently proposed by the authors [10]. Cabello’s model uses
an empirical correction of the stress distribution on the adhesive layer. The apparent Young’s modulus
of the adhesive is a function of the transverse position in the adhesive midplane. Using this correction,
the stress distribution assumed within the adhesive layer is more accurate. The model predicts the elastic
behaviour of the adhesive layer but it does not include any mechanism to simulate the crack propagation.
To predict bond failure due to crack propagation, analysis models based on the Cohesive Zone Models
(CZM) can be used. CZMs are able to accurately reproduce the fracture process zone (FPZ) that devel-
ops ahead of a crack tip and, therefore, accurately simulate the load redistribution due to damage and the
progressive failure of adhesive joints. Cohesive zone models are usually developed in a finite element
framework [11–15]. They are actually the most common numerical method to predict the adhesively
interface separation, however fine meshes and higher computational cost are required to obtain accurate
results. Different cohesive laws have been proposed in the literature, but normally assumptions of zero
adhesive thickness are made. Recently, Sarrado et al. [16] presented a finite cohesive element with
thickness to capture the influence of the adhesive elasticity on the damage development. The aim of the
present paper is to propose a new analytical model with coupled progressive cohesive damage to predict
failure process of an adhesive joint loaded under mode I. The model is based on Euler beam on Winkler
elastic foundation theories. The foundation stiffness accounts for the elasticity of the adhesive layer and
is coupled with a cohesive zone model (Fig. 1).

The model is used for the analysis of bonded joints with two different adhesives (flexible and stiff). The
progressive failure of the DCB specimen predicted by the proposed model has been compared to different
experimental results and finite element simulations.

2. Analytical model based on beam on elastic foundation coupled with cohesive damage

2.1. General analytical DCB model based on beam on elastic foundation

The general model presented by the authors [17] in a recent publication is used as the basis of the
formulation of the coupled model. The general DCB model is based on beam on elastic foundation and
it is defined using beam theory assumptions and modelling the behaviour of the adhesive layer using
an infinite set of springs with stiffness k. The initial length of the springs is equal to the thickness of
the adhesive layer and their deformation defines the magnitude of an equivalent distributed load q; view
more details in [5, 17]. The distributed load of the foundation is obtained by integrating the stresses
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New model: elastic foundation  + cohesive damageb)

cohesive interface 
stiffness

bulk adhesive 
stiffness

elastic foundation 

bulk adhesive 
stiffness

a)

Figure 1. Comparison between a DCB model based on elastic foundation beam theory a) without a
progressive damage b) coupled with a cohesive zone model.

along the specimen width [10], and the stiffness foundation is:

ky = E′(eq)
a B∗t (1)

where Ea is the apparent Young’s modulus of the adhesive layer and B∗t a geometric parameter. Both
parameters depend on the stress stated considered for the analysis. A summary of different approaches
used in the literature to simulate is shown in Table 1.

Stiffness foundation Cabello et al. [10] Jumel [7] Krenk [5]
ky = E′(eq)

a B∗t (general model) ({x, B} � ta) ({x, B} � ta)
E′(eq)

a
(1−νa)Ea

(1+νa)(1−2νa)+ψx

(1−νa) Ea
(1+νa)(1−2νa) Ea

B∗t
B
ta
− ln

(
1 − νa − ν

2
a + ψx

(1 + νa)(1 − 2νa) + ψx + ψ(B/2)

)6νa

B/ta

Table 1. Stiffness of the elastic foundation from different authors. Ea, νa are the adhesive Young modulus
and Poison’s ratio, and ta is the thickness of the adhesive layer. B is the width of the specimen.

The general model proposed in [10] includes the other approaches of the literature as a particular cases,
e.g. if the distance to crack front x and the width of the specimen B are larger than the adhesive thickness
ta, the correction functions become ψx = 0 and ψ(B/2) = 0 and the stiffness foundation of the general
model match with Jumel’s model [7]; on the contrary, if x and B tend to zero (at the edges of the adhesive
layer), the correction functions become ψx = ψ(B/2) = ν2

a and the stiffness foundation of the model
matches with the solution proposed by Krenk [5].
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2.2. Stiffness foundation model coupled with a progressive damage model

The models presented in previous section assume a linear elastic behaviour of the adhesive layer. This
approach is valid at early stages of the deformation process, but if the adhesive layer is highly loaded, in-
elastic processes develop and the equivalent stiffness of the foundation is not longer constant. A cohesive
zone model coupled with the stiffness foundation model is used in this work to describe the degradation
process prior to cohesive failure of the adhesive layer. A similar approach as proposed in Sarrado et
al. [16] is used to couple both models. In [16] the model was implemented in a finite element code
using a cohesive element with a finite thickness, in the present paper, an analytical solution is provided.
The model assumes that the elastic and nonlinear deformation can be modelled with two sets of springs
working in series. Therefore, the deformation of the adhesive layer is divided into two terms: the elastic
elongation of the adhesive layer δ(adh)

y and the nonlinear elongation due to damage δ(coh)
n .

The nonlinear processes are collapsed to a surface located at the midplane of the adhesive layer, and
these nonlinear processes are modelled using a bilinear cohesive law, based on the model of Turon et al.
[14]. The relation between the cohesive traction τn and the nonlinear elongation (cohesive displacement
jump) δ(coh)

n reads

τn =
τmax

n

δ(o)
n

(1 − Dn)δ(coh)
n (2)

where τmax
n is the maximum cohesive traction and δ(o)

n the normal cohesive displacement jump corre-
sponding to the maximum normal traction. Using a bilinear cohesive law and the elastic foundation
model proposed by Cabello et al. [10], the equivalent stiffness foundation, equation (1), is now updated
incorporating the damage parameter and redefining the geometric term B∗(eq)

t as a function of the applied
displacement:

ky = E′(eq)
a (1 − Dky)B

∗(eq)
t (3)

where the damage on elastic foundation Dky is now function of an equivalent E′(eq)
a (x) Young’s modulus

reads,

Dky =



0 : (2uy) 6 τmax
n ta/E

′(eq)
a

2E′(eq)
a /(τmax

n ta) − 1/uy

2E′(eq)
a /(τmax

n ta) − τmax
n /JIc

: τmax
n ta/E

′(eq)
a < (2uy) < 2JIc/τ

max
n

1 : (2uy) > 2JIc/τ
max
n

(4)

and the equivalent width to thickness ratio B∗(eq)
t is
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B∗(eq)
t =



Eq.
B
ta
− ln

(
1 − νa − ν

2
a + ψx

(1 + νa)(1 − 2νa) + ψx + ψ(B/2)

)6νa

: (2uy) 6 τmax
n ta/E

′(eq)
a

B
ta
− ln


1 +

νa
2

(1 + νa)(1 − 2νa) + ψx
−

2 E′(eq)
a JIc

ta(τmax
n )2

1 +
ψB/2

(1 + νa)(1 − 2νa) + ψx
−

2 E′(eq)
a JIc

ta(τmax
n )2


6νa

: τmax
n ta/E

′(eq)
a < (2uy) < 2JIc/τ

max
n

−undefined− : (2uy) > 2JIc/τ
max
n

(5)

3. Model validation and discussion of results

3.1. Validation methodology

An experimental campaign of DCB tests was carried out with two different adhesives. The experimental
tests were simulated using the analytical model proposed and numerical simulation with finite elements.
The results of the analytical models have been compared with the FEM results and the experimental data.

3.1.1. Experimental DCB tests

Two different adhesives are used, one flexible (Silkron-H100) and another stiff (Araldite-2021). All
specimens used in this work were cured in a climatic chamber. All DCB tests were performed in a
MTS-Insight testing machine at room temperature. The mechanical properties needed for the proposed
model are the fracture energy, the elastic properties and the ultimate strength of the adhesive. The elastic
properties and ultimate strength are take taken from tensile tests given in [10] and summarized in Table
2 for both adhesives.

Property Araldite-2021 Silkron-H100
Young’s modulus (MPa) 1590 4

Poisson’s ratio (-) 0.35 0.4996
Ultimate strength (MPa) 22.6 2.2

Table 2. Adhesive properties determined experimentally from the tensile test using standards ISO-37
[18] and ASTM-D638 [? ].

The fracture energy was obtained by means of an experimental campaign of DCB tests. Two batches of
20 specimens were tested for both adhesive types using the setup recommended in ISO-25217 [18]. The
DCB specimens consisted of two metallic adherends bonded by an adhesive layer. The adherends were
2-mm-thick calibrated steel hand-rails type AISI-420 with a yield strength of 650 MPa, Young’s modulus
Es = 200 GPa and Poisson’s ratio νs = 0.33. The initial crack used was a0 = 20mm and specimen length
L = 180 mm. The width of the specimens were B = 25 mm and the thickness ta = 1 mm and ta = 2 mm
for stiff and flexible adhesives, respectively. The tests were performed using a universal testing machine
with a crosshead rate of 2 mm/min controlled by displacement and using a video camera to monitor
the crack tip position. Two inclinometers, at point of load application, were also used to compute the
J-integral. The value of the fracture energy, used for the analytical and numerical models are taken as
the mean value in the self-similar crack growth regime, i.e., JIc = 1.56 N/mm for the Stiff Araldite-2021
adhesive and for 5.48 N/mm for the flexible Silkron-H100 adhesive.
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3.1.2. 3D finite element model simulation using cohesive elements

The DCB tests, for the two adhesive joints, were simulated by means of 3D Finite Element Models in
ANSYS [19]. The adherends were modelled using SOLID185 8-node quadrilateral elements with their
respective linear elastic material properties. The adhesive layer was modelled using SOLID185 8-node
quadrilateral elements with the elastic material properties of the adhesive given in Table 2 and a row
of cohesive interface elements (INTER205) at the midplane of the adhesive layer. The cohesive law
was assumed bilinear with a very low penalty stiffness in accordance with the linear law implemented
in the analytical model. The interface strengths of the adhesives are listed in Table 2 and their fracture
toughnesses obtained from the J-integral reported in previous section. The mesh was constructed taking
advantage of the automatic meshing algorithms of ANSYS and manual resizing obtaining an element
size of 0.25 mm. The loading device was simulated by a combination of rigid beams that reproduce the
experimental setup. The mesh and boundary conditions of the model used in the simulations are sketched
in Fig. 2.

11 X

Y

Z

adherend adhesive 

P

P

cohesive interface

ta

B

a0

L

Mesh

elements

0.25 mm

11 X

Y

Z
Cohesive 
elements

Solid 

Figure 2. Mesh and boundary conditions used in finite element DCB model.

3.2. Load-displacement curve predicted by the model

The load-displacement curves obtained from the experimental tests are compared with the predictions of
the analytical model implemented in Matlab. For the stiff adhesive (Fig. 3a) all models provide similar
results, and they are in close agreement with the experimental data. In the self-similar crack propagation
regime the predictions of all models fall between the envelope of the experimental data. However, the
peak load is underpredicted in all cases, but this is attributed to the fracture toughness used in the models.
For flexible adhesives (Fig. 3b) the behaviour is completely different. There is a large non-linear region
where damage develops decreasing the apparent stiffness. A very good correlation between experimental
tests and the analytical model is obtained. Therefore, for both adhesive types, the results of the FEM
simulation are very similar to those obtained with the coupled analytical models, but the computation
time is significantly higher.

4. Conclusions

A new analytical DCB model has been proposed based on elastic foundation beam theory coupled with
a cohesive zone damage model using a bilinear cohesive law. The model captures the influence of the
stress-strain state and the influence of the width to thickness ratio on the equivalent stiffness foundation
of the adhesive layer. The model can also be applied to fully incompressible materials.

Albert Turon, Mario Cabello, Carlos Sarrado, Javier Zurbitu, Jordi Renart and Félix Martı́nez

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 7

a) b)

FEMExperimental

k H 2 3 4 5 6 7 8 9 Hk
k

Hkk

2kk

3kk

4kk

5kk

6kk

7kk

8kk

Test3with3lowest3result

Test3with3highest3result

Lo
ad

3(
N

N

Displacement3(mmN

Araldite-2k2H3DCB3specimens

k 4 8 H2 H6 2k 24 28 32 36 4k
k

Hkk

2kk

3kk

4kk

5kk

6kk

7kk

8kk

Silkron-HHkk3DCB3specimens

Lo
ad

3(
N

N

Displacement3(mmN

Test3with3highest3result

CabelloLs3model3[9]3coupled3with3damage33

Test3with3lowest3result

Figure 3. Load-displacement curve obtained by different models in comparison with experimental DCB
test for a) Araldite-2021 and b) Silkron-H100 specimens.

The model has been implemented in Matlab. The computational time is very low compared to the
comutational time of 3D finite element simulations. The model proposed has been validated against
DCB experimental tests with steel adherends and both flexible Silkron-H100 and stiff Araldite-2021
adhesives. A good correlation between the experimental results and the model coupled with cohesive
damage has been observed for both types of adhesives in terms of damage process, adhesive stresses at
the midplane of the adhesive layer, and load-displacement curve predictions.
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