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Abstract 
A continuum model is developed to study the buckling behavior of anisotropic thin-walled circular 
cylindrical shells under combined torsional load, axial compressive force and external radial pressure. 
In this paper, the governing equations are derived and analytical solution is presented for predicting 
the buckling behavior of the anisotropic thin-walled cylindrical shells subjected to combined loads by 
using the Flügge shell theory and complex method. To validate the accuracy of the results of this 
analysis, the results are compared with solutions found in the literature. It shows that the present 
model is accurate and appropriate for the prediction of buckling behavior of thin-walled cylindrical 
shells. Based on the present model, relationships between the critical pressure, axial and torsion loads 
are established, which can be used for determining the stress limits when designing practical systems 
in which combined loads may be applied. 
 
 
1. Introduction 
 
Thin-walled circular cylindrical shells are highly efficient structures and they have wide practical 
applications in the aerospace, petrochemical and construction industries [1]. When shells are subjected 
to the radial pressure, axial and torsional loads, their strengths are limited by structural buckling. Thus, 
the buckling of the shells under various types of combined loads has been subject of many 
investigations [2-5]. However, very little information has been published on triple-load interactions [6-
9]. 
Motivated by the above ideas, we develop a continuum model to study the buckling behavior of 
anisotropic thin-walled cylindrical shells under combined torsional load, axial compressive force and 
external radial pressure. In this paper, the governing equations are derived and analytical solution is 
presented for predicting the buckling behavior of the anisotropic thin-walled cylindrical shells 
subjected to combined loads by using the Flügge shell theory and complex method. The Flügge theory 
is known as a highly reliable theory that can be used for most shapes regardless of the size of their 
cross-sectional radius. To validate the accuracy of the results of this analysis, the results are compared 
with solutions found in the literature. It shows that the present model is accurate and appropriate for 
the prediction of buckling behavior of thin-walled cylindrical shells. Based on the present model, 
relationships between the critical pressure, axial and torsion loads are established, which can be used 
for determining the stress limits when designing practical systems in which combined loads may be 
applied. 
  

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials   
Munich, Germany, 26-30th June 2016 2 

Esmaeal Ghavanloo and S. Ahmad Fazelzadeh 
 

 
2. Mathematical Formulation of the Problem  
 
The geometry of the shell and coordinate system are shown in Fig. 1. The cylindrical shell is assumed 
to have length L, and thickness h, and both ends of the shell are considered simply supported. In the 
case of circular cylindrical shell, we use x and  as axial and circumferential angular coordinates, 
respectively, and z is the coordinate along thickness (outward) of the shell. The displacements in the 
axial, circumferential, and radial directions are denoted by u, v, and w, respectively. The governing 
equations for the thin-walled cylindrical shell with uniform external loads are [10, 11] 
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(3) 

where N, T and p are externally applied mid-face axial compressive force, torsional load and uniform 
external pressure, respectively. Nxx, Nθθ, xN  are force resultants and Mxx, Mθθ, xM  are moment 
resultants defined as 
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Figure 1. Geometry of thin-walled cylindrical shell under combined loads. 

 
The strain components xxe , e  and xe  at an arbitrary point of the shell are related to the middle 
surface strains 1e , 2e and 3e  and to the changes in the curvature of the middle surface 1k , 2k  and 3k  
by the following relationships: 

 },,{},,{},,{ 321321 kkkzeeeeee xxx   (6) 

According to Flügge linear shell theory [12], the middle surface strain-displacement relationships and 
changes in the curvature for the circular cylindrical shell are 
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After the substitution of equations (4)-(8) into equations (1)-(3), the governing equations for the 
anisotropic thin-walled cylindrical shell in terms of axial, circumferential and radial displacements of 
the mean surface, (u, v, w), are obtained as: 
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in which Ci j are the components of elastic constants. Up to now, the analysis has been general without 
reference to the boundary conditions. An analytical solution based on complex method is presented for 
analyzing the buckling behavior of the anisotropic thin-walled cylindrical shells with a special 
boundary condition. Complex variable is used to solve the governing equations (9)-(12) by setting the 
real and imaginary zero. This is commonly used as solution technique to solve differential equations of 
coupling problems in mathematics [13]. For simply supported boundary condition, we have Re (w*) = 
Re (v*) = 0 at both ends of shells. The displacement fields that satisfy these essential boundary 
conditions at x = 0, L can be written as: 
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where U , V  and W  are the non-dimensional displacement amplitudes in the x, θ, z directions, 
respectively, λq (λq = m , m is the half-axial wave-number) is the wave-number along the axial 
direction, n is the wave-number in the circumferential direction. This displacement field provides us a 
good way to solve the couple problems. It has at least three features: it satisfies the partial differential 
equations; it easily satisfies the boundary conditions because it is in form of sine and cosine functions; 
it takes account into the interactive effect of coordinates of x and θ when substituting the governing 
equations and setting the real and imaginary zero. Substituting equations (13)-(15) into equations (9)-
(11), yields a set of algebraic equations for U , V  and W  as 
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Here [E] is a nonsymmetric matrix. For the non-trivial solution, the determinant of this set of 
equations must be zero, i.e. 

0),,,,(det 33
*** pTNnmE

 
(16) 

By solving the resulting eigenvalue problem, the critical buckling loads of the cylindrical shells can be 
obtained and the associated eigenvectors yields the corresponding mode shapes. For elastic buckling 
analysis, we search for the minimum load. 
      
 
3. Numerical Results and Discussion 
 
To check the validity, efficiency, and accuracy of the present method, some comparisons of the results 
are made for various loading conditions. In Table 1, the non-dimensional critical axial compressive 
forces are given for an isotropic thin cylindrical shell and compared with the values determined based 
on the formulation given by Yoo and Lee [14]. The results in Table 1 indicate that the present results 
are consistent with those available in the literature. Table 2 compares the results for non-dimensional 
critical pressure of thin cylindrical shell with simply supported boundary conditions with the results of 
Yoo and Lee [14]. It may be noted here that the solutions obtained for this case using the present 
model agree well with those of analytical approach [14]. 
The effect of the external pressure on the axial stability of the thin-walled cylindrical shells is 
investigated. Fig. 2 presents the effect of the external pressure on the critical axial compressive load of 
the isotropic cylindrical shell with different values of the aspect ratio. For numerical simulation 
purpose, the following parameters are used: r/H = 20, ν = 0.3 and T* = 0. As it is observed, the aspect 
ratio plays an important role in indicating how the external pressure affects the mechanism of the 
buckling. It can also be seen that with increasing the aspect ratio, (decreasing of r), the stable region 
(under the critical curve) is reduced. In addition, any increase in the external pressure decreases the 
critical axial compressive load of the cylindrical shells. In fact, in this case, the external pressure 
pushes the wall of cylinder inward, resulting in a stronger tendency of the cylinder to collapse under 
axial compressive load. 
As the second case, the effect of the anisotropic properties of the shell on its buckling behavior is 
shown in Fig. 3. The anisotropic properties of four materials, which are used in this work, are given in 
Table 3. In this case, we take H = 0.025, r = 0.5 and T* = 0.  
Finally, we consider the buckling of cylindrical shells subjected to combinations of three loadings: 
axial compression force, torsion load and external internal pressure. Fig. 5 shows the effect of the 
external pressure and the applied torque on the critical axial compressive loads of the cylindrical shell 
made of material 3. For numerical simulation purpose, the following parameters are used: r/H = 20 
and r = 0.1. Similar to the effect of the external pressure and the torque on the critical axial 
compressive force, the existence of the external pressure and the torque result in a lower critical 
buckling axial compressive force than the corresponding one under pure axial buckling. This figure 
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can be used for determining the load limits when designing thin-walled cylindrical shell in which 
combined loads may be applied. 
 
 

Table 1. Comparison between non-dimensional critical axial compressive force, N*, of cylindrical 
shell obtained from present simulations and Yoo and Lee [14] for ν=0.3. 

  r = 2 H = 0.01 r = 2 H = 0.05 
m n Yoo and Lee [14] Present Yoo and Lee [14] Present 
1 1 0.0220 0.0219 0.0239 0.0239 
1 2 0.0191 0.0189 0.0213 0.0212 
1 3 0.0154 0.0152 0.0181 0.0180 
1 4 0.0118 0.0116 0.0154 0.0153 
1 5 0.0088 0.0087 0.0136 0.0137 
2 1 0.0060 0.0060 0.0133 0.0140 
2 2 0.0058 0.0058 0.0133 0.0141 
2 3 0.0055 0.0055 0.0135 0.0143 
2 4 0.0051 0.0051 0.0138 0.0146 
2 5 0.0047 0.0047 0.0143 0.0152 
3 1 0.0032 0.0033 0.0195 0.0211 
3 2 0.0032 0.0033 0.0197 0.0214 
3 3 0.0031 0.0032 0.0201 0.0218 
3 4 0.0031 0.0031 0.0207 0.0225 
3 5 0.0030 0.0031 0.0215 0.0234 

 
 
Table 2. Comparison between non-dimensional critical pressure, p*, of cylindrical shell obtained from 

present simulations and Yoo and Lee [14] for ν=0.3. 
H R Yoo and Lee [14] Present m n 

0.05 0.5 16.857210-4 16.895510-4 1 3 

 1 6.524310-4 6.53210-4 1 5 

 2 2.634910-4 2.632910-4 1 9 
0.01 0.5 0.259910-4 0.255910-4 1 5 

 1 0.096410-4 0.096110-4 1 8 

 2 0.056710-4 0.057110-4 1 10 
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Figure 2. Critical axial compressive loads of isotropic cylindrical shell versus the external pressure for 

different values of r. 
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Figure 3. Critical axial compressive loads of four anisotropic cylindrical shells versus the external. 

 
 

Table 3. Material properties of four anisotropic materials. 

 Elastic constants   
c22  c12 c13  c23 c33 

Material 1 0.34 0.10 0.00 0.00 0.14 
Material 2 0.54 0.29 0.29 0.10 0.35 
Material 3 1.85 0.52 0.20 0.54 0.64 
Material 4 2.95 0.27 0.00 0.00 0.40 
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Figure 4. Critical axial compressive loads of isotropic cylindrical shell versus the torque for different 

values of r. 
 

 
3. Conclusions 
 
In this work, the combined effects of external loads on the buckling properties of the anisotropic 
cylindrical shell under combined loads was studied. In spite of some achievement in the buckling 
analysis of the cylindrical shells, to the authors’ knowledge, there has been no attempt to tackle the 
problem described in the present investigation. The validity of the results was successfully verified 
through comparison with data available in the literature. The main results of the present work are 
summarized as follows. 

1) Under combined loads, the stable region is reduced when the aspect ratio of the shell is 
increased. 

2) Application of the external pressure and applied torque result in a lower critical axial buckling 
than the corresponding one under pure axial buckling.  
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Figure 5. Buckling of anisotropic cylindrical shells under combined loads. 
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