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Abstract 

A model for the longitudinal response of laminated fibre-reinforced composites during compressive 

damage growth is implemented in a Finite Element (FE) package and validated for mesh objectivity. 

The current work details the FE implementation of the fibre kinking model and in particular challenges 

associated with mesh objectivity. The numerical way to solve the stress equilibrium and stress 

compatibility equations simultaneously in an FE framework is also presented. The results show that 

the current model can be used to predict the kinking response and thus account for the correct energy 

absorption.  

 

 

1. Introduction  

 

From all intralaminar failure modes, the one that has been most referred in the literature is kink band 

formation or simply kinking. The interest in this particular failure mode is mainly due to the need to 

orient fibres at zero degrees in designs for stiffness, strength and energy absorption. There are well 

established models to predict stiffness and strength but not for energy absorption, i.e. the post-peak 

response is not correctly addressed.  Kinking is a very complex phenomenon due to the interacting 

mechanisms and due to the instability created at failure. The representative models in the literature are 

mainly analytical and FE models based on micromechanics [1-3]. However, none of the approaches is 

able to represent the behaviour of large and complex structures in multiaxial loading situations.  

 

The proposed model is based on Continuum Damage Mechanics (CDM) and it homogenizes the fibres 

and the matrix together at the ply level (mesoscale), thus less computationally expensive and suitable 

for larger structures. In spite of the general belief, fibre kinking is considered a matrix dominated 

failure mode [4] and an accurate matrix response becomes necessary to predict the kinking response. 

Thus the transverse and the shear responses used in the present model are based on a physical coupling 

between damage growth and friction created at microcrack closure as described in [5]. As a result a 

non-zero frictional stress acts on crack faces when the material is partially or fully damaged. This type 

of modelling is important to account for the correct energy dissipation at different strain levels, e.g. 

during progressive crushing in car crash situations. 

 

The longitudinal response is obtained by using fibre kinking theory, Fleck et al. [2], i.e. non-perfectly 

straight fibres rotating under an applied compressive load induce a loss of stability in the resin that 

eventually leads to kink-band formation. This framework is extended to predict the response after the 
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peak load.  The current model is able to predict the whole kinking response under a 3D stress state. 

The peak stress results from shear instability due to the highly nonlinear shear response [6]. The 

resulting compressive-softening behaviour differs greatly from the most commonly used bilinear 

approaches. 

 

 

2. Overview of the constitutive model 

 

The fibre kinking response is found from solving simultaneously (i) the stress equilibrium between 

applied global stresses and nonlinear local stresses resulting from (ii) the nonlinear constitutive law of 

the material in the kink-band. The actual rotation of the fibres in the kink-band is resolved from (iii) 

the strain compatibility, as detailed in [3]. In summary the kink-band is influenced by the compressive 

longitudinal strains, the transverse and the shear stresses as well as the misalignment of the fibres in 

the composite.  

 

 

2.1.  Geometrical perspective  

 

The kinking phenomenon has a strong 3D nature which requires a 3D framework for an accurate 

prediction. The development of the current 3D model is explained in detail in [3]. The FE 

implementation is detailed here as well as a succinct summary of the model. 

 

 

 
 

Figure 1. Illustration of the present kinking model  

 

Figure 1(a) shows a micrograph of a typical kink-band. Two coordinate systems are introduced: the 

first one rotated to the orientation of the kink-band through the thickness is denoted r and the second 

(misaligned) coordinate system, m, is associated with the rotating fibres and is characterised by the 

angle . The factors contributing to fibre rotation in the kink-band are represented in Figure 1(b). 

Figure 1 (c) defines the initial and current configurations and associated fibre rotations. The numerical 

subscripts (11, 22, 12) refer to the global coordinate system and the subscripts using m (11m, 22m, 

12m) refer to the misaligned frame, m, also referred to as local frame or kink band frame later on. 

 

Based on Figure 1(c) the following relation can be established   

im   12        (1) 
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2.2.  Model formulation 

 

The current model predicts the longitudinal compressive response for an arbitrary loading. The three 

conditions aforementioned, (i) to (iii) are summarized in the equations that follow. Starting with strain 

compatibility (iii), which can be expressed as a function of the shear angle as 

  01112
2

22
2

1112   csscf mmmm  (2) 

where )cos(c  and )sin(s . Using numerical methods it is possible to find a m12 which satisfies 

Equation (2).  For the remaining unknowns one can take advantage of the elastic assumptions. Thus, 

the strains in the kink band coordinate system can be expressed as  

m
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To solve the previous set of equations it becomes necessary to establish the stress equilibrium (i), 

which will constitute the second set of equations as follows: 
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(4) 

where the stresses on the Right Hand Side (RHS) are in the r coordinate frame. The stress component 

of interest is the kinking stress, . However, the transverse and the shear stresses need to be 

calculated from (ii) which constitutes the nonlinear response of the matrix. The shear response 

accounts for nonlinearity by combining damage with friction in a physical way according to [5] as 

follows  

friction
mm ddG   )1(121212  (5) 

where 
friction  represents the in-plane frictional stress and d is the state of damage detailed in  [3]. 

Finally, from the third row in Equation (4) the kinking stress is given by  

   scscsc m /)( 12
22

122211    (6) 

 

2.2.1  Simplification of the model 

Only for a more tangible understanding the previous equation can be simplified assuming uniaxial 

stress state (22=12=0) and small rotations. It results in a variant of Budiansky’s equation [4] in which 

the shear and compressive strengths are replaced by the in-plane shear and kinking stresses 

respectively 

im

m











12

12
11  (7) 

From the simplification above it becomes clearer that fibre kinking is driven by matrix failure and 

strongly influenced by the initial fibre misalignment. Many authors have identified i as the variable 

that incorporates the defects (voids etc).  

 

 

2.3. Material properties 

 

The material data used in this manuscript was taken from [7] which provides further information about 

the characterisation of the mechanical properties. The parameters necessary for the model were 

gathered in Table 1. The in-plane shear strength, SL, is the value at the onset of shear nonlinearity. The 

parameter p0L accounts for the internal pressure in the longitudinal direction built up during 

manufacturing. The kink band width, w, Figure (1a), was assumed to be 0.2 mm just for convergence 

studies. 
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Table 1. Mechanical properties of the uni-weave NCF composite HTS45/LY556 

 

Elastic properties 

Modulus (GPa)  Poisson’s ratios 

 13611 E   9.1522 E   4.912 G  28.012   43.023 v   

Strength properties (MPa) Kinking parameters 

 1787tX   29tY   20LS  7.0p  w = 0.2 mm 

 626cX   130cY    47.44TS    

Friction properties 

              Internal pressure (MPa) Coefficient of friction 

 600 
L

p   300 Tp   0.34L  4.0T  

 

 

2.4. Results at the material point 

 

The stress-strain relation predicted by the current model can be partially validated by two test cases. In 

the first case, the peak stress and corresponding strain during uniform axial loading, as reported in [7], 

is correlated with stresses and strains at failure, indicated by crosses in Figure 2. It is evident that the 

results are in good agreement with the model predictions for typical misalignment angles of 2.5° to 

3.5°. The scatter in results reflects the strong influence of initial fibre misalignment angles. In the 

second case the predicted stress for large compressive strains is in good agreement with the measured 

average crush stress [8], as indicated in Figure 2. 

 

 
 

Figure 2. Model response for fibre compression for different fibre misalignments vs. experiments: 

Strength and mean crush stress  
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3.  FE implementation 

 

The model described previously was implemented into a user subroutine, VUMAT, in the commercial 

FE code ABAQUS. The main numerical challenges are related to the solution of Equation (4) and (5) 

and to the mesh objectivity due to the softening behaviour.  

 

Damage growth is the main dissipative mechanism in CFRP. This is modelled through a damage 

variable, d, and the effect of damage degrades stress components and regulates the friction 

contribution. The damage must assume values between 0 (no damage) to 1 (fully damaged material), 

giving the following equation for the current damage variable at a given increment n: 

  1,min,0max nn dd   (8) 

Damage is irreversible, i.e. the damage effects cannot be recovered. This condition is the assumption 

for unloading; following that the damage variable is redefined as  

 1,max  nnn ddd  (9) 

 

 

3.1.  Solution procedure for Equations (1) to (6) 

 

In order to solve the stress equilibrium and the strain compatibility it is necessary to use a root-finding 

method. In the current approach the bisection method was chosen. The reasons to choose this method 

over other methods with faster convergence are its simplicity and robustness, particularly close to the 

peak load. Taking advantage of the simplicity of bisection one can directly write all the equations as 

described into the model formulation. Using methods with faster convergence will require coupling 

Equations (1-6) into two equations, to solve for two unknowns, in order to calculate their respective 

derivatives (either analytically or numerically). In the following analyses we will consider the case 

with i = 4°. 
 

 

3.2.  Mesh objectivity  

 
The challenge with damage models is that they have a softening response, which makes it necessary to 

deal with the strain softening behaviour. A cube of side L=1 mm was meshed with one element 

(1x1x1) and successively refined till (5x5x5). When more elements are added, the softening response 

is mesh dependent, Figure 3. 

 

 
  

Figure 3.  FE model responses showing the mesh dependency issue 
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In order to solve the mesh objectivity issues, previous models [6] took advantage of the critical strain 

energy release rate Gc to define the final strain (for the fully damaged material) that is proportional to 

the element characteristic length. However, in the current model, Gc is not used, which is a major 

advantage for model simplicity but an extra difficulty for FE implementation. Thus, one possible 

approach is to scale the strain with the kink-band width (w), which is a material parameter. 

 

3.2.1  Method 1 – Strain decomposition 

As shown in Figure 4, Method 1 decomposes the strain into a bulk/elastic component el , and a kink 

band component k . The total displacement, d is expressed as 

)( wLwL eelkeelk  ddd  (10) 

where   is the total strain applied to the element. The previous equation can be rearranged and the 

kinking strain becomes  

  wEwk 1111)1(   , where e
Lww   (11) 

where the kinking stress, 11 must be recovered from a previous iteration. The whole iteration process 

stops when the tolerance criterion is met. These iterations add computational costs. Another important 

drawback with this method is the snap-back behaviour observed for ratios of w  smaller than one-

fourth, oberved in Figure 4 for 1 element. The results are shown in Figure 4(a) and the elements with 

higher damage are shown in red (or lighter colour) in Figure 4(b). The solution “5x5x5, no method” 

corresponds to the case when the element size coincides with the kink band width, i.e. w =1, which 

allows simulation of the kink band localisation in the real material. The agreement with the other 

curves confirms the mesh objectivity. 

 

 
 

Figure 4. Method 1: (a) kinking responses, (b) respective mesh refinements 

 
3.2.2 Method 2 – Smear the kink-band over the element  

In this method the strain in the kink-band is distributed (smeared) over the whole element. The strain 

at the peak stress is denoted o, Figure 5(a) Thus, when softening starts, i.e. when the peak stress has 

been reached, the kinking strain is split using the following strain-decomposition 

  wLeoksoftk /    (12) 

This method is computationally cheaper and more stable when compared to method 1, since there is no 

need to iterate on the kinking stresses again.  
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Figure 5. Method 2: (a) kinking responses, (b) respective mesh refinements  
 

3.3.  Unloading effects  
 

In a model with multiple elements some of them undergo softening behaviour when the peak stress has 

been reached, i.e. the absolute value of the longitudinal strain, |11| decreases, representing an 

unloading situation. The unloading behaviour for two examples of unloading-loading cycles shown in 

Figure 6 is based on the sliding-sticking response of the friction, as described in [4]. The shear 

instability has been defined according to [6]. 
 

 
 

Figure 6. Cyclic response: (a) cyclic kinking stress and associated damage, (b) cyclic shear stress  
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During unloading the damage variable remains constant following Equation (9). The shear response 

for the model is shown in Figure 6 (b). The increase of the permanent strain from the first to the 

second loop is evident, which constitutes an asset of the model. The shear strength represented, SL in 

Table 1 dictates the initiation of the damage variable. Shear instability occurs at higher shear strains, 

resulting in the inversion of the kinking response, i.e. the kinking strength is determined by shear 

instability.  

 

4.  Conclusions 

 

An FE implementation of a validated material model is detailed with special attention to mesh 

objectivity. The bisection root finding method was used with satisfactory results for solving the stress-

equilibrium and the strain-compatibility with robustness and simplicity. The mesh objectivity, a major 

issue with many models with softening behaviour, is resolved for different refinement levels. It is 

shown that a method based on strain decomposition gives mesh objective results but is limited in 

element size as elastic snap-back otherwise takes place. A smeared method removes this issue while 

preserving the mesh objectivity. 

 

5.  Future work  

 
Since the implemented analytical model has proven to represent the experiments, the FE model should 

be able to do the same. Nevertheless, due to the complexity of crash, the current FE model needs to be 

validated against experimental data. Therefore, the interaction of fibre kinking with other failure 

mechanisms will be addressed in the continuation of the current work.  
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