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Abstract 
The concept of the effective stiffness of a unidirectional layer with intralaminar cracks is revisited 
performing 3-D FEM parametric analysis of symmetric and balanced laminates with damaged 90-
layer. The effective stiffness of the damaged layer is obtained from the difference between damaged 
and undamaged laminate stiffness. The effective longitudinal modulus and Poisson’s ratio of the layer 
are equal to their initial values.  A very simple expression for the effective transverse modulus change 
with normalized crack density has sufficient accuracy and generality to be used in laminate theory to 
predict macroscopic elastic property change with crack density in laminates with very different lay-ups 
and made of different UD composites. 
 
 
1. Introduction 
 
Usually the first damage mode in laminates is intralaminar cracking of layers with off-axis orientation 
with respect to the main load.  Intralaminar cracks run parallel to fibres in the layer and the crack plane 
is perpendicular to the laminate middle-plane usually covering the entire thickness of the layer and the 
whole width of the specimen.  The term “crack density” ߩ௞  (a number of cracks in the k-th layer over 
certain distance (cracks/mm)) is used to quantify the damage state. More appropriate for use is 
dimensionless crack density 

௞௡ߩ ൌ  ௞ (1)ݐ௞ߩ
 
The macroscopic stress applied to the laminate boundaries has a rule of mixtures relationship with 
average stresses in damaged and undamaged layers [1]. Therefore the stiffness of the damaged 
laminate, being calculated from macroscopic stresses and strains, can be expressed in terms of average 
stresses in damaged layer.  Determination of the average stress change requires knowledge of the 
stress distribution between cracks. 
The so called micromechanics modelling deals with stress perturbations caused by cracks. The 
simplest calculation scheme is based on shear lag assumptions, for example [2,3]. Variational models 
of varying degree of accuracy have been presented in [4-7]. A high accuracy model was presented in 
[7]. Unfortunately most of the analytical solutions are applicable to cross-ply type of laminates with 
cracks in 90-layers only. In [8] analysing the stress between cracks in one layer the “Equivalent 
constraint model” was introduced suggesting to replace the rest of damaged and undamaged layers by 
one homogenized layer which would have the same constraint effect on the damaged layer.  
An alternative approach to account for the average stress change was suggested in [1,9]: in [10] exact 
relationships between the average stress change in layers and the average crack opening (COD) and 
crack sliding (CSD) displacements were established. That was a proof that the damaged laminate 
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stiffness can be expressed in terms of change of average stress in damaged layers or, if it is more 
convenient, in terms of normalized average CODs and CSDs. The latter is preferable when crack face 
displacements COD and CSD have been calculated, for example, using FEM. The COD and CSD 
formulation is used in the GLOB-LOC approach [1,9], obtaining exact expressions for thermo-elastic 
constants of a general symmetric damaged laminate with average COD and CSD as input parameters 
(fitting functions from FEM parametric analysis).  
Both described approaches render stiffness of the damaged laminate. However, often (for example 
using shell elements in numerical damage analysis of composite structures) not the damaged laminate 
properties but properties of the layer with multiple cracks (geometrical discontinuities) are the input 
data.  The most efficient approach to that is replacing the layer with cracks by undamaged 
homogenized material with “effective” elastic properties. An extreme case of this approach is the well 
know ply-discount model.  
The effective stiffness matrix of the damaged layer may be back-calculated from known undamaged 
laminate stiffness and the stiffness of laminate with damage. Strictly speaking the effective stiffness 
dependence on crack density is not just a property of the layer: it depends on laminate lay-up and 
properties of the surrounding layers. The numerical results presented in this paper prove that at least 

the crack density dependence of the transverse effective modulus, ்ܧ
௘௙௙ is a very robust function with 

respect to material change or location of the damaged layer. Here the upper index “eff” stands for 

“effective”. The effective longitudinal modulus ܧ௅
௘௙௙ and the Poisson’s ratio ߥ௅்

௘௙௙ of the damaged 
layer remain the same as for undamaged UD composite. 
The study is limited to symmetrical laminates considered in global coordinate system where the 
cracked layer becomes 90-layer and the laminate in this system is balanced (for example cross-ply and 
quasi-isotropic laminates). Analysis of the effective shear modulus, which would require shear loading 
of laminates in FEM, is not considered in this paper.  
 
2. Theoretical background 
 
Symmetric N- layer laminate is considered. The k-th layer of the laminate is characterized by thickness 

kt , fiber orientation angle with respect to the global x-axis k  and by stiffness in the local axes ሾܳሿ 

(defined by elastic constants ܧ௅, ,்ܧ ,௅்ܩ ௅்). Notation ሾߥ തܳሿ௞ is used for the stiffness matrix of this 
layer in global coordinates. The thickness of the laminate is ݄ ൌ ∑ ௞ݐ

ே
௞ୀଵ . The crack density in a layer 

is ߩ௞ and the dimensionless crack density ߩ௞௡ is introduced in (1). 
It is assumed that the laminate remains symmetric in the damaged state: the crack density in 
corresponding symmetrically located layers is the same. The stiffness matrix of the damaged laminate 
is ሾܳሿ௅஺ெ  and the stiffness of the undamaged laminate is ሾܳሿ଴

௅஺ெ.  Notation for the compliance matrix 

of the undamaged laminate is ሾܵሿ଴
௅஺ெ ൌ ൫ሾܳሿ଴

௅஺ெ൯
ିଵ

 . Elastic constants of the undamaged laminate are 
calculated using CLT. 
 
2.1.  Effective stiffness of the damaged layer 
 
The study is limited to laminates with two symmetrically located damaged layers of the same 
orientation and with the same state of damage. In CLT the stiffness matrix ሾܳሿ଴

௅஺ெ of the laminate is 
independent on the layer sequence in the laminate and, therefore, without losing generality we can 
assume that the two symmetric layers to be damaged have indexes 1 and N.  
The stiffness matrix of the undamaged laminate is calculated as  
 

     
h

t
Q

h

t
QQ N

N

N

k

k
k

LAM 2
1

2
0  





 (2) 

When damage with given dimensionless crack density ߩ௞௡ , see (1), is introduced in the N-th layer the 
stiffness matrix of the laminate is ሾܳሿ௅஺ெ   
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Subtracting (3) from (2) we obtain 

        
h

t
QQQQ Neff

NN
LAMLAM  20

 
(4) 

From here the effective stiffness of the damaged N-th layer is 

        LAMLAM

N
N

eff

N QQ
t

h
QQ  02  

(5) 

If the damaged layer is the central layer in the laminate its index is N1=(N+1)/2 and 

        LAMLAM

N
N

eff

N QQ
t

h
QQ  0

1
11

 
(6) 

The global stiffness of the layer can be transformed to local axes using expression (index N or N1 is 
now omitted) 

      Teffeff TQTQ 
 

(7) 

The effective compliance matrix and the effective engineering constants are  

ሾܵሿ௘௙௙ ൌ ൫ሾܳሿ௘௙௙൯
ିଵ

௅ܧ  , 
௘௙௙ ൌ

ଵ

ௌభభ
೐೑೑ ,   ்ܧ

௘௙௙ ൌ
ଵ

ௌమమ
೐೑೑ ,    ܩ௅்

௘௙௙ ൌ
ଵ

ௌలల
೐೑೑ ,  െߥ௅்

௘௙௙ ൌ ௅ܧ
௘௙௙

ଵܵଶ
௘௙௙       (8) 

With coordinate transformation we can always achieve that the damaged layer in a laminate has 90-
orientation. In these coordinates (assuming the laminate is balanced) the change in ܧ௫௅஺ெ, ,௬௅஺ெܧ  ௫௬௅஺ெߥ

will depend on  ܧ௅
௘௙௙, ்ܧ

௘௙௙, ௅்ߥ
௘௙௙ of the damaged 90-layer and not on the effective shear modulus 

௅்ܩ
௘௙௙. This is because in symmetric and balanced damaged laminates a) the shear stress-strain response 

is separated from the normal response; b) the shear modulus of the 90-layer (the initial or the effective) 
does not enter the laminate equations for the normal response. For similar reason ܩ௫௬௅஺ெ  does not 

depend on ܧ௅
௘௙௙, ்ܧ

௘௙௙, ௅்ߥ
௘௙௙  of the damaged 90-layer. 

Interaction of cracks belonging to different layers is not accounted for in the present analysis. A simple 
iterative procedure can be suggested: cracks are explicitly introduced only in one couple of symmetric 
layers and the rest of damaged layers are homogenized .  
 
2.2.  Damaged laminate stiffness 
 
The following exact expressions were obtained for symmetric and balanced laminate with damaged 
90-layers in [1]: 
 

ாೣಽಲಾ

ாೣబ
ಽಲಾ ൌ

ଵ

ଵାଶெఘవబ೙
೟వబ
೓
௨మೌ೙
వబ ௖మ

      
ா೤ಽಲಾ

ா೤బ
ಽಲಾ ൌ

ଵ

ଵାଶெఘవబ೙
೟వబ
೓
௨మೌ೙
వబ ௖ర

   (9) 

ఔೣ೤ಽಲಾ

ఔೣ೤బ
ಽಲಾ ൌ

ଵାଶெఘవబ೙
೟వబ
೓
௨మೌ೙
వబ ௖భቆଵି

ഌಽ೅
ഌ೤ೣబ
ಽಲಾቇ

ଵାଶெఘవబ೙
೟వబ
೓
௨మೌ೙
వబ ௖మ

     
ீೣ೤ಽಲಾ

ீೣ೤బ
ಽಲಾ ൌ

ଵ

ଵାଶெఘవబ೙
೟వబ
೓
௨భೌ೙
వబ ಸಽ೅

ಸೣ೤బ
ಽಲಾ

   (10) 

ܿଵ ൌ
ா೅

ாೣబ
ಽಲಾ

ଵିఔಽ೅ఔೣ೤బ
ಽಲಾ

ሺଵିఔಽ೅ఔ೅ಽሻమ
 ܿଶ ൌ ܿଵ൫1 െ ௫௬଴ߥ௅்ߥ

௅஺ெ൯  ܿସ ൌ
ா೅

ா೤೚
ಽಲಾ

൫ఔಽ೅ିఔ೤ೣబ
ಽಲಾ൯

మ

ሺଵିఔಽ೅ఔ೅ಽሻమ
  (11) 

 
In (9)-(11)  ݑଶ௔௡

ଽ଴  is the average normalized opening and ݑଵ௔௡
ଽ଴  the average normalized sliding 

displacement of the 90-layer crack faces (letters “a” and “n” denote the average and “normalized” 
respectively). Index 90 is used also for thickness, crack density and COD in the 90-layer. The 
quantities with upper index LAM are laminate constants, quantities with additional lower index 0 are 
undamaged laminate constants. Parameter M is the number of equal damaged 90-layers in the 
laminate: for central 90-layer M ൌ 1, for two symmetric damaged 90-layers M ൌ 2. 
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According to (10) the laminate shear modulus is not related to  ݑଶ௔௡
ଽ଴  and depends on sliding 

displacement only. On the other hand the sliding displacement ݑଵ௔௡
ଽ଴  does not enter expressions for 

,௫௅஺ெܧ ,௬௅஺ெܧ  ௫௬௅஺ெ: the change of the laminate shear modulus is not coupled with the change of otherߥ
elastic constants.  
The class of laminates covered by these expressions is broader than just cross ply laminates or 
balanced laminates with cracked 90-layers. Any quasi-isotropic laminate with an arbitrary damaged 
layer can be rotated to have the damaged layer as a 90-layer still keeping the laminate balanced. The 
limitation of (9)-(11) is that the laminate has zero coupling terms in ሾܵሿ଴

௅஺ெ and in ሾܵሿ௅஺ெ. 
Expressions (9), (10) show that analyzing elastic constants for normal loading, only one constant for 
the damaged laminate has to be calculated: for example using 3-D FEM we find 	ܧ௫௅஺ெ only. From 
there we can use (9) to find the term with ݑଶ௔௡

ଽ଴   and use it to calculate 	ߥ௫௬௅஺ெ  and  ܧ௬௅஺ெ. A separate 
FEM calculation is required to find ܩ௫௬௅஺ெ. 
 
3. Effective transverse modulus: parametric FEM analysis 
 
In this Section the effective elastic properties of damaged layers are analyzed. Calculations are 
performed for transversely isotropic CF/EP and GF/EP composites with elastic properties  and prepreg 
layer thickness ݐ଴	given in Table 1. Cross-ply laminates of configuration [0m/908]s and [908/0m]s and 
quasi-isotropic laminates with 0, 45, -45 and 90 orientation of layers, varying position of the 90-layer 
are considered. In all cases cracks are in 90-layers only.  
 
 

Table 1 Elastic constants of used UD composites 
 

Material 
LE  

(GPa) 
TE

(GPa) 
LT  T3  LTG

(GPa) 

t0 

(mm) 

GF/EP  45.0 15.0 0.3 0.4 5.0 0.5 
CF/EP 150 10 0.3 0.4 5.0 0.5 

 
3-D models, see Fig. 1, were created in ABAQUS with 3D  (C3D8) 8-node linear brick elements. 
Mesh with 86400 elements was used in each FE model with refined mesh near the crack surfaces. 
Constant displacement corresponding to 1% average strain was applied to the repeating unit in x-
direction. On the front edge (y=0) and the far-away edge (y=w) coupling conditions were applied for 
normal displacements (ݑ௬ ൌ unknown constant). These conditions correspond to generalized plane 
strain case. The total force in x-direction was used to calculate  ܧ௫௅஺ெ. Then the ݑଶ௔௡

ଽ଴  was obtained 
from first equation in (9) and used in (9),(10) to calculate 	ܧ௬௅஺ெ,  .௫௬௅஺ெߥ
 
  

 
 

Figure 1. Models for COD studies with cracked 90-layers supported by domains with balanced lay-
ups: a) crack in inside 90-layer; b) crack in surface 90-layer. 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials 
Munich, Germany, 26-30th June 2016 5 

J. Varna, MS. Loukil 

 

 
The stiffness matrix of the damaged laminate was used to calculate the effective elastic constants 
௅ܧ
௘௙௙, ்ܧ

௘௙௙, ௅்ߥ
௘௙௙ of the 90-layer following expressions in Section 2.1.   

For all considered laminates the following numerical result was obtained: the effective longitudinal 

modulus and the major Poisson’s ratio of the damaged layer do not change due to cracking (ܧ௅
௘௙௙ ൌ

,௅ܧ ௅்ߥ
௘௙௙ ൌ  ௅் ). This result supports the modified ply-discount model in which only the transverseߥ

modulus and the shear modulus are reduced. 

The obtained 	்ܧ
௘௙௙ as a function of normalized crack density for [0m/908]s cross-ply laminates is 

shown in Fig. 2. The effect of the constraint layer (0-layer) thickness on 	்ܧ
௘௙௙ is very weak for both 

materials. The data in Fig.2 were fitted and the fitting functions were used for qualitative comparison 
between materials and lay-ups.  
For GF/EP [0m/908]s the fitting function is  

்ܧ
௘௙௙ ൌ 9 ∙ ݁ିଶ.ହఘవబ೙ ൅ 6 ∙ ݁ି଴.ଽఘవబ೙ (12) 

 
For CF/EP [0m/908]s the fitting function is  

்ܧ
௘௙௙ ൌ 9.5 ∙ ݁ିଵ.ସఘవబ೙ ൅ 0.5 ∙ ݁ିଵ.ଷఘవబ೙ (13) 

 

Similar relationships were obtained for [908/0m]s laminates. The effect of the 0-layer thickness on	்ܧ
௘௙௙  

even in this case is similar for both materials. 
 
  

 
 

Figure 2. Effective transverse modulus	்ܧ
௘௙௙  versus the normalized crack density in the 90-layer of 

[0m/908]s laminates. Solid lines are approximations by functions (12) and (13) respectively for GF/EP 
and for CF/EP  

 

Analyzing the ்ܧ
௘௙௙ of 90-layer in quasi-isotropic laminates with cracks in internal 90-layers, see 

Fig.3, we conclude that the difference between ்ܧ
௘௙௙ of the 90-layer in [45/-45/0/90]s  and in  [0/45/-

45/90]s  laminate is very small. The solid curves are the fitting for ்ܧ
௘௙௙ of the 90-layer in [0m/908]s 

laminate: the effective modulus of the 90-layer in quasi-isotropic laminate can be represented by the 

்ܧ
௘௙௙ from cross-ply laminate. The 	்ܧ

௘௙௙  data for the surface 90-layer in [90/0/45/-45]s  and [90/-
45/45/0]s  laminates confirm this observation. These results show that the effective 90-layer transverse 
modulus in damaged cross-ply laminate may be of relevance for laminates with more general lay-up. 
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Figure 3. Effective transverse modulus	்ܧ
௘௙௙  versus normalized crack density in the 90-layer of [45/-

45/0/90]s  and [0/45/-45/90]s  laminates. Solid lines are approximations (12) and (13) for [0m/908]s 
laminates 

 

When the effective transverse modulus of the layer 	்ܧ
௘௙௙ is normalized with respect to the initial 

value	்ܧ, the 	்ܧ
௘௙௙ ൗ்ܧ  dependence on normalized crack density is similar in GF/EP and CF/EP cross-

ply and, for example, for internal 90-layer normalized (12) can be used for GF/EP and CF/EP 

்ܧ
௘௙௙ ൌ ்ܧ ൬

3
5
∙ ݁ିଶ.ହఘవబ೙ ൅

2
5
∙ ݁ି଴.ଽఘవబ೙൰ (14) 

However, the difference in reduction rate is significant between surface and internal damaged 90-
layers. It is because the crack opening ݑଶ௔௡

ଽ଴  in surface layer is about two times larger [1] leading to 
faster effective stiffness reduction. In the laminate stiffness expressions (9), (10) ݑଶ௔௡

ଽ଴  is always 
multiplied by normalized crack density ߩଽ଴௡. Hence it is possible to introduce “reduced crack density” 
ଽ଴௡ߩ
∗ to reduce the effect of the COD differences (ߩଽ଴௡

∗ ൌ ଽ଴௡ߩ ଽ଴௡ for internal layers andߩ
∗ ൌ  ଽ଴௡ forߩ2

surface layers. The 	்ܧ
௘௙௙  versus the “reduced crack density” is shown In Fig. 4: curves are very 

similar for surface and internal damaged layers.  
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Figure 4. Effective transverse modulus	்ܧ
௘௙௙  versus reduced crack density ߩଽ଴௡

∗  in the 90-layer of 
cross-ply laminates. Approximation functions (14) is used 

 

Based on the above we suggest an extremely robust 	்ܧ
௘௙௙ calculation scheme, where the normalized 

curve (14) for GF/EP [0m/908]s is used for CF/EP cross-ply, quasi-isotropic laminates, for inside and 
surface damaged layers . In other words 

்ܧ
௘௙௙ ൌ ்ܧ ൬

3
5
∙ ݁ିଶ.ହ௞ఘవబ೙ ൅

2
5
∙ ݁ି଴.ଽ௞ఘవబ೙൰ (15) 

can be used for any damaged layer ( ݇ ൌ 1 for internal layers and ݇ ൌ 2 for surface layers). In next 
section we will inspect the accuracy of this assumption predicting stiffness of laminates. 
 
4. Damaged laminate stiffness prediction 
 
The axial modulus ܧ௫௅஺ெ and Poisson’s ratio ߥ௫௬௅஺ெ of damaged laminates may be calculated in any of 
the following ways: a) using 3-D FEM models as described in Section 3; b) using CLT with effective 

transverse modulus of the layer 	்ܧ
௘௙௙ calculated according to (15). The CLT expression is 

ሾܳሿ௅஺ெ ൌ ෍ሾ തܳሿ௞
௘௙௙ ௞ݐ

݄

ே

௞ୀଵ

 (16) 

Undamaged layers  have    
ሾ തܳሿ௞

௘௙௙ ൌ ڿ തܳۀ௞ (17) 

For damaged layers ሾ തܳሿ௞
௘௙௙ is calculated using the effective modulus 	்ܧ

௘௙௙ and initial elastic constants 
for ܧ௅, ߥ௅் . Predicted laminate stiffness is in a very good agreement with FEM results for both 
composites and used lay-ups. An example is shown in Fig.5 where the GF/EP cross-ply laminate based 
(15) is used to predict the elastic properties reduction of quasi-isotropic laminates.  
 
 

 
 

Figure 5. Normalized axial modulus ܧ௫௅஺ெ and Poisson’s ratio ߥ௫௬௅஺ெ versus normalized crack density 
 ଽ଴௡ in the 90-layer of CF/EP and GF/EP quasi-isotropic laminates. In CLT predictions functions (15)ߩ

is used. 
 

This paper does not cover cases when the effective shear modulus reduction affects laminate stiffness 
because until now the effective shear modulus change has not been studied sufficiently.  
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4. Conclusions 
 
Stiffness of symmetric and balanced laminates with intralaminar cracks in 90-layers was analyzed 
directly using 3-D FEM model and also using laminate theory with effective transverse modulus of the 
damaged layer. The effective transverse modulus of the 90-layer was calculated from the difference 
between the undamaged and damaged laminate stiffness. Calculations showed that the effective 
longitudinal modulus and the major Poisson’s ratio of the damaged layer do not change at all due to 
intralaminar cracking.  
The effective transverse modulus reduction in a normalized form is almost the same for glass fiber and 
carbon fiber/epoxy layers and the layer thickness ratio and lay-up (quasi-isotropic laminates) has very 
small effect on the modulus reduction rate. However, the effective transverse modulus reduction with 
normalized crack density is much faster in surface layers. Introducing “reduced” crack density the 
effective stiffness reduction curves for surface and internal layers almost collapse. A method was 
proposed in which the very robust effective transverse modulus dependence on the normalized crack 
density is described by one simple function. This expression was used in CLT to calculate stiffness of 
different damaged laminates reaching very good agreement with FEM results.  
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