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Abstract 

Mathematical model for numerical solution of damage in layered anisotropic material structures has 

been developed. In the model, various types of layered materials can be proposed by using any type of 

anisotropic materials of the layer with different mechanical properties. The analysis calculates stress 

and strain quantities in the structure and at the damaged interface. The concept of solution is based on 

quasi-static rate-dependent evolution of the delamination process at the interface. The proposed 

mathematical approach is based on an energetic formulation looking for a kind of weak solution. The 

solution is approximated by a time stepping procedure, the Symmetric Galerkin Boundary Element 

Method (SGBEM), and it utilizes non-linear programming algorithms. The acquired results are also 

presented, demonstrating their significance and application in engineering practice.  

 

 

1. Introduction 

 

Composite  materials are commonly used as structural materials in lightweight structures at present. In 

aerospace applications, where a high strength-to-weight ratio is required and lightweight is a key 

aspect of the design, their level of structural responsibility has significantly increased as they are 

massively used in primary structures. Composite materials especially layered materials are frequently 

corrupted between the layers. From this point of view the availability of reliable methods for 

predicting the failure of these materials is perhaps one of the most important requirements when 

designing composite components and structures [3, 5]. 

However, predictions of initiation and propagation of damage in composites are still not sufficiently 

accurate and reliable, which leads to high safety coefficients in design. There are several approaches 

for an analysis of this kind of contact problems [4, 8]. One of the most efficient and useful ways for 

the numerical modelling of interface damage, especially the crack initiation and crack propagation, is 

by applying of the cohesive-zone models. 

The Cohesive Interface Model (CIM), is introduced and implemented in a Symmetric Galerkin BEM 

(SGBEM) code. The regularization is proposed so that convex quadratic energy functionals are 

obtained and quadratic programming algorithms can be efficiently applied. In the following sections 

the developed model is described, its numerical solution is outlined and an example is solved to assess 

its applicability in the area of laminate composites. 
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2. Cohesive interface models 

 

2.1.  Description of the interface model 

 

For the sake of simplicity and notation, only two debonding 2D bodies will be considered in the 

description of the model. Let us consider a layered structure defined by a planar domain 

 BAR ,2    with bounded Lipschitz boundaries 
  , Fig.1. However, it should be noted that 

the theory can be generalized to allow also 3D bodies. Let us denote the unit outward normal vector 
n defined at 

  and similarly we can denote the unit tangential vector s such that it defines anti-

clockwise orientation on 
 . 

 

 
 

Figure 1. Two debonding domains and the used notation. 

 

The contact zone C  is defined as the common part of 
A  and 

B , i.e. 
BA

C   . The Dirichlet 

and Neumann boundary conditions are defined on the outer boundary parts, respectively, prescribing  

displacements 
 wu   on 



u  and tractions as 
 ft   on 



t . It is considered that the subdomains 

can debond along the interface C . The interface is considered as an infinitesimally thin layer of an 

adhesive. Interface damage mechanism is modelled by a scalar damage variable  , which has 

meaning of the level of interface damage.   varies at each interface point between one and zero: 

1)( x  corresponds to the undamaged state, 0)( x  reflects total rupture. 

 

2.2.  Bilinear cohesive interface model 

 

In engineering and computational mechanics practise is often preferred bilinear response of the 

interface model, including the so-called softening period. This kind of model is referred to as bilinear 

Cohesive Interface Model (CIM) [8]. Bilinear CIM with softening period has been found to 

approximate accurately Mode I experimental results. Considering, e.g., pure opening Mode I, the 

failure of a layer point occurs when the driving force G  reaches the activation threshold, usually 

reffered to as fracture energy, dG , and correspondingly both, the mechanical stress nt  and relative 

normal displacement  nu , achieve their critical values, respectively. 
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Figure 2. CIM response for the driving force G , the damage parameter   and mechanical stress  . 

 

Achieved softening period depends on a constant   [7], Fig.2 c.), defined as 
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3. Mathematical concept of the delamination process 

 

This section reviews the mathematical formulation of the energetic approach of interface failure 

mechanism for CIM. The solution is acquired by variational formulation, which exploits developed 

numerical treatment of inelastic process. 

 

3.1.  Energetic formulation of the interface damage 

 

To define the energetic conception of the interface damage mechanism, let us consider the stored 

energy functional [4, 8, 9] in the anisotropic structure obeying the aforementioned type of the interface 

damage in a generalized plain-strain state [6]. The stored energy functional is defined as: 
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(1) 

with the admissible displacements   wu   on 


u  and the small strain tensor  ,  u the 

potential energy of external forces: 

  ...,   
dufdufuF

B
t

A
t

BBAA  
(2) 
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And the dissipation potential: 

   
C

dGR d     for  0 , (3) 

as parameter   has only decreasing character during the process of  interface damage. 

3.2. Numerical solution and computer implementation  

 

The numerical procedures proposed for solving the aforementioned problem contain time and spatial 

discretizations, as usual. They are considered separately. The time discretization includes a semi-

implicit scheme in order to provide a variational structure to the solved problem [4]. The procedures 

are developed so that the solved problem is formulated in terms of the boundary data only, with the 

spatial discretization carried out by SGBEM. The expressions for the model in the displacement 

variables are such that they allow quadratic implementation. 

 

3.2.1. Time discretization  

 

The time-stepping scheme is defined by a fixed time step size 0  such that 0 kk   for 

0/,1 Tk  . The rate of damage can be approximated by 0

1 /)(   kk , where 
k denotes 

the solution at the discrete time
k .  The differentiation with respect to the rate of damage can be 

replaced by the differentiation with respect to  . 

  
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(4) 

It means that the inclusion is approximated at discrete times 
k  by the first order optimality 

conditions for the energy functionals 
k

uH and 
kH : 

    ,),(,, 0

1
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 (5) 
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(6) 

Specifically, assuming 
1k  and 

1ku  known from the previous time step, the problem includes two 

subsequent minimisations: 

 First minimize )(uH k

u with )(minarg uHu k

u

k  . 

 Second minimize )(
kH with )(minarg  

kk H . 

The recursive time-stepping procedure naturally starts from the solution at 1k calculated by using 

the initial conditions 00 u  and 10  . The optimality solution is denoten by ),( kku  [2]. 

 

3.2.1. Spatial discretization and SGBEM 

 

The role of the SGBEM in the present computational procedure is to provide a complete boundary-

value solution from the given boundary data for each domain in order to calculate the elastic strain 

energy in these domains. Thus, the SGBEM code calculates unknown tractions along 

uC    and 

unknown displacements along 


t , assuming the displacaments jump at 
C  to be known from the used 
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minimization procedure, in the same way as proposed and tested in [9] for the solution of the presented 

Boundary Value Problems an SGBEM approach has been applied . 

 

 

4 . Numerical example 

 

The present work is focused on the interlaminar fracture toughness test of composite materials. For 

numerical example, Double Cantilver Beam (DCB) is used. The test is used in aeronautical industry to 

evaluate the interlaminar fracture toughness in composite-composite joints are performed by well 

known standard procedures [1, 5]. 

The presented formulation of interface contact problem has been tested numerically by a computer 

code, which was implemented in MATLAB. The developed numerical algorithm exploits the 

variationally based Symmetric Galerkin Boundary Element Method to calculate the elastic solution at 

the interface and in each subdomain. The geometry in the presented example includes two domains. 

The geometry of model and load configuration is conspicuous from Fig. 3. 

 

 
 

Figure 3. Scheme of DCB specimen numerical model. 

 

4.1. Model properties  

 

In this example, a simulation of the interlaminar fracture toughness test is going to be carried out.  

The laminate considered is an 8552/AS4 carbon fibre – epoxy composites (having only 0º plies), with 

the following orthotropic properties: 135xE GPa, 10yE GPa, 10zE GPa, 5xyG GPa,  

5xzG  GPa, 3.0xy , 4.0yz , 3.0xz .  

The properties estimated for bilinear CIM are:  500nk  GPa/m, 15c MPa, constant 429.0  

and 1.0ncu mm corresponding to a value of 750IcG Jm
-2

, see Fig.2 [1, 5]. 

The applied loading w  is assumed on the both laminates in the direction normal to the specimen 

boundary. In total, there were considered 250k  load steps. The loading process defines the 

prescribed displacements increasing during the loading process: kk utw  for 250,..2,1k 01.0u mm 

and 
0ktt k  , 10 t s. The dimensions of numerical model are : 195L mm, length of initial crack 

551 L  mm and  10t mm. Due to the symmetry of the problem there are not tangential relative 

displacements. 

 

4.2. Results 

 

The achieved numerical solution of the investigated interface contact model is presented in Fig. 4.  

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials     

Munich, Germany, 26-30th June 2016 6 

Filip Kšiňan, Roman Vodička 

 

 

 

 

 
 

Figure 4. Numerical deformed shapes, response of the normal tractions and of damage parameter at 

the interface at the pertinent loadstep  k. 
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The graphs  present the evolution of the damage which provokes an interface crack of a layered 

anisotropic structure. In the time step 25k  can be observed undamaged interface, damage parameter 

1)( x  for 135;0x , because normal tractions nt  have not achieved  their critical value 

15nct MPa. There can also be observed the distribution of the normal tractions in the vicinity of the 

crack tip. The pertinent deformation is plotted directly above the graphs for each selected time step k. 

The numerical model confirms the expected behaviour in accordance with the applied theory and 

asseses its applicability for layered anisotropic materials. 

 

 

6. Conclusions 

 

A numerical study of the stress quantities in a damaged interface of a layered anisotropic structure has 

been carried out and an energy-based model for solving the contact problem has been discussed. The 

SGBEM has proved to be a very suitable and accurate tool to deal with the problem under 

consideration. The proposed cohesive zone approach was obtained by considering a new two-

parameter damage dependent interface stiffness function which provides the required bilinear 

dependence if stress and strain quantities. Observed results shows the potential of numerical model 

and its applicability for more complicated numerical examples.  
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