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Abstract

A constitutive material law for linear thermo–viscoelasticity in the time domain with orthotropic material

symmetry under plane stress assumption is developed and implemented into a commercial FEM package.

Full orthotropy is realized for the time dependent relaxation formulation, i.e., both for the elastic as well

as for the viscous properties. Thereby, each element of the relaxation tensor is described by its own and

independent Prony series expansion. Time dependent thermal expansion relaxation/creep which occurs

in composite materials is treated in analogy.

Various tests on isotropic and orthotropic problems are carried out for verification. Homogenized mate-

rial data as input to the developed material laws are computed from a periodic unit cell approach.

1. Introduction

Viscoelastic effects are widespread in natural as well as in engineering materials. Among them are al-

most all biological tissues and most polymers, in particular thermoplastic materials. Biological materials

are composites “by nature”, whereas engineering polymers are often mixed with other constituents to

improve their performance. In addition, the field of glass or carbon fiber reinforced plastics has gained

great importance in lightweight design and for industrial applications. The latter group of composites is

likely to exhibit relaxation/creep type behavior for the thermal expansion, too.

Such composites, natural and man made ones, often have elongated reinforcements with preferred ori-

entation. Consequently, their properties are direction depended and the consideration of anisotropy be-

comes inevitable. For the mathematical description of a material’s behavior a constitutive law is required.

Strictly speaking, it must be able to predict the response to any type of loading and any type of loading

history. Such constitutive laws at hand do not only contribute to the understanding of the material, they

are also necessary to give the material description in course of structural analyses. A widespread and

very general approach to the latter is the Finite Element Method (FEM) which is employed in the present

work.

A general introduction into viscoelasticity can be found, e.g. in [1–3], which focus predominantly on

isotropic behavior and treat the time as well as the frequency domain. Transversely isotropic (and or-

thotropic) viscoelastic models have been presented, e.g. in [4, 5], based on invariants of the strain rep-

resentation, which are commonly used for biological soft tissues. Typically, they combine nonlinear

orthotropic elasticity with linear isotropic viscosity. Linear viscoelasticity of orthotropic media is pre-
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sented in [6, 7] in the context of geo-materials. Linear and nonlinear orthotropic viscoelasticity adopting

not the full set of orthotropic viscous effects is presented in [8, 9] and applied to composites and foam

materials, respectively. A linear viscoelastic constitutive law in the time domain for cubic material sym-

metry is presented in [10] and applied to highly porous structures. Orthotropic material symmetry in the

frequency domain is treated in [11]. Relaxation type effects occurring for the thermal expansion behavior

are mentioned in [1]. A hygro–thermal expansion relaxation function is presented in [12].

In the present work linear viscoelasticity of orthotropic materials is treated in the time domain. Thereby

the elastic as well as the viscous response are considered to behave orthotropically. Temperature de-

pendence is accounted for by a time–temperature shift function. Time dependent, relaxation/creep

type thermal expansion is treated. The algorithms are implemented into the commercial FEM program

ABAQUS/Standard v6.14 (Dassault Systemes Simulia Corp., Providence, RI, USA) as user supplied ma-

terial law (UMAT) and user supplied thermal expansion behavior (UEXPAN), respectively. The treatment

is done under the assumption of plane stress states, but the approach is general and can be extended to

tri-axial problems and general anisotropy straightforwardly.

2. Linear Viscoelastic Orthotropic Plane Stress Constitutive Model

The hereditary integral in tensorial form reads,

σi(t) =

∫ t

0

Ri j(t − s)ε̇ j(s)ds with σi = (σ11 σ22 σ12)T , εi = (ε11 ε22 γ12)T , (1)

adopting plane stress and Voigt notation. The time dependent material tensor for orthotropic materials,

Ri j(t) =





















R11(t) R12(t) 0

R21(t) R22(t) 0

0 0 R33(t)





















, Ri j(t) = R ji(t) , (2)

is composed by individual relaxation functions,

Ri j(t) = Ri j 0[1 −
∑

k

ri j k(1 − exp(−t/τri j k ))] (no sum on i j) , (3)

which are given by Prony series expansions with Ri j 0 being the instantaneous values, i.e. the elasticity

tensor elements giving the short term behavior. The sum over k Prony terms contain the relative relaxation

elements, ri j k, and the corresponding characteristic times, τri j k .

Note, that in the present formulation the relaxation tensor, eqn. (2), possesses off-diagonal terms which

can exhibit their own independent relaxation behavior. This requires extended treatment in contrast to

the isotropic (or uni-axial) case which can be formulated by uncoupled scalar equations. Moreover, these

off-diagonal terms implicitly contain some Poisson relaxation which is not necessarily monotonic, see

e.g. [13].

2.1. Decoupled Shear Behavior

Inspection of eqn. (2) shows that for orthotropic material symmetry treated in the principal material

coordinate system, the shear behavior is decoupled from the other tensor components. Thus, the corre-

sponding scalar equation can be handled by the standard means.

For the case of the decoupled shear behavior, eqn. (1) can be interpreted as scalar equation with i = j = 3.

The same applies to the relaxation function as a simplification of eqn. (3) for the index 33. Then the R33

and r33 variables pertain to shear modulus quantities. Applying these simplifications, eqns. (1) and (3)

can be combined to give the shear stress shear angle relation,

σ3(t) = R33 0[ε3 −

∑

k

r33 k

τr33 k

∫ t

0

exp(−s/τr33 k )ε3(t − s)ds] , (4)

Heinz E. Pettermann and Antonio DeSimone

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials

Munich, Germany, 26-30th June 2016 3

where the expressions in the summation are the contributions by the Prony terms k, and the “relative

creep shear angle” can be introduced as,

e3
3 k =

1

τr33 k

∫ t

0

exp(−s/τr33 k )ε3(t − s)ds , (5)

where the superscript indicates the cause (i.e. the applied strain) and the subscript denotes the stress

component which is affected. By introducing the “total creep shear angle”,

ǫ33 =
∑

k

r33 k e3
3 k , (6)

as the sum over all Prony terms, the shear stress shear angle relation reads, finally,

σ3 = R33 0[ε3 − ǫ
3
3 ] . (7)

The relative creep shear angle contributions of each Prony term, e3
3 k

, are interpreted as internal state

variables concerning the shear response. Additional state variables pertaining to normal strains will be

introduced later.

2.2. Coupled Normal Behavior

The normal stresses can be expressed by combining eqn. (1) and (3), here exemplified for one normal

stress component, as,

σ1(t) = R11 0[ε1 −
∑

k
r11 k

τr11 k

∫ t

0
exp(−s/τr11 k )ε1(t − s)ds]

+R12 0[ε2 −
∑

k
r12 k

τr12 k

∫ t

0
exp(−s/τr12 k )ε2(t − s)ds]

, (8)

which reveals the coupling. The first term is the contribution by the normal strain ε1 and the decay

expressed by the diagonal element R11(t) from eqn. (3). So far it is formally equivalent to the decoupled

shear behavior discussed above. However, the second term states the coupling effect caused by the

normal strain ε2 and the corresponding decay is expressed by the off-diagonal element R12(t). The latter,

in the present formulation, can have its own and independent relaxation behavior. The relative creep

contributions in the Prony terms can be given as,

e1
1 k =

1

τr11 k

∫ t

0

exp(−s/τr11 k )ε1(t − s)ds and e2
1 k =

1

τr12 k

∫ t

0

exp(−s/τr12 k )ε2(t − s)ds , (9)

and summarized to the “total creep contributions” as,

ǫ11 =
∑

k

r11 k e1
1 k and ǫ21 =

∑

k

r12 k e2
1 k . (10)

Finally, the stress component can be given as,

σ1 = R11 0[ε1 − ǫ
1
1 ] + R12 0[ε2 − ǫ

2
1 ] . (11)

The stress component σ2 can be derived likewise, involving ǫ1
2

and ǫ2
2

type expressions.

Note, that the expressions ǫ
j

i
and e

j

i k
cannot be interpreted as creep strains, since they pertain to some

3× 3 matrix (in Voigt notation) which, moreover, does not need to be symmetric. Consequently, they are

rather property type quantities carrying information on how much of the relaxation potential has been

consumed until time t. Nevertheless, the e
j

i k
for every Prony term k represent the internal state variables.

The temperature dependence of viscoelastic material data is treated by introducing a reduced time, tred =

t/A(T ) with the shift function, A(T ), which depends on the temperature, T .
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2.3. Thermal Expansion Relaxation/Creep Model

Materials may show thermal expansion which exhibit time dependence. For composites such an effect is

obvious since the effective thermal expansion is, among others, a function of the elastic properties of the

constituents. Once the latter are time dependent, the thermal expansion of the composite is it, too.

In linear thermo–(visco)elasticity assuming small strains, additive decomposition can be applied, which

gives the total strain,

εtot = εve + εth , (12)

as the sum of the viscoelastic ve and the thermal th contribution.

Following [1], the time dependent thermal expansion relaxation is given as,

εth
i (t) =

∫ t

0

αi(t − s)ϑ̇(s)ds , (13)

with αi(t) being the time dependent coefficients of thermal expansion, ϑ is the temperature change from

some (stress free) starting temperature, and temperature independent behavior is assumed. For the time

independent case, the usual thermal expansion results from integration of eqn. (13) as, εth = αϑ. Note

that eqn. (13) exactly resembles the hereditary integral in eqn. (1) for the time dependent stresses under

strain loading. Thus, the further treatment goes in perfect analogy to linear viscoelasticity as treated in

Section 2.1.

The time dependent thermal expansion tensor (in Voigt notation) for orthotropic materials under plane

stress reads,

αi(t) = [ α11(t) α22(t) 0 ]T . (14)

The components are given by the individual relaxation functions,

αi(t) = αi 0[1 −
∑

k

ai k(1 − exp(−t/τai k ))] (no sum on i) , (15)

with the instantaneous thermal expansion coefficient αi 0 and the relative relaxation values ai k as well as

characteristic times τai k for the Prony series expansion with k terms. For a typical composite, the relative

relaxation values, ai k, are negative. Since the thermal expansion involves second rank material tensors

and the scalar valued temperature there is no coupling among thermal expansion coefficients. For the

present case of plane stress orthotropy two independent relaxations are present. Applying eqns. (4) to (7)

analogously, one obtains the thermal expansion as,

εth
i = αi 0[ϑ −

∑

k

ai k θi k] . (16)

The “relative creep temperatures”, θi k, have no direct physical meaning, however, they carry the infor-

mation on the amount of relaxation and, consequently, are used as internal state variables. Temperature

dependent thermal expansion relaxation is not treated here.

The viscoelasticity and the thermal expansion relaxation have to be solve simultaneously, fulfilling

eqn. (12). Within the framework of an implicit, incremental FEM approach the thermal expansion incre-

ment is subtracted from the total strain increment, eqn. (12). The remaining strain enters the viscoelastic

constitutive material law from which the incremental stress update is computed.

3. Application

The implementation of the viscoelastic model is carried out with the UMAT option, the thermal expansion

with the UEXPAN option, for ABAQUS/Standard v6.14 (Dassault Systemes Simulia Corp., Providence,

RI, USA). The implementation follows the ABAQUS Manual. For the handling of the coupling terms,
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Table 1. Isotropic linear thermo–viscoelastic material data as input to the ABAQUS material law; in-

stantaneous elastic moduli, bulk and shear relaxation by one Prony term each, and coefficient of thermal

expansion.

E0 = 2500MPa ν0 = 0.25 (G0 = 1000MPa)

k = 0 (τk = 1.0s) g = 0.5 τg = 1.0s

α0 = 1 × 10−4/◦C
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Figure 1. Single element predictions of the relaxation functions Ri j(t) as response to Heaviside step

strains by the ABAQUS on board material law (“abamat”) and the developed constitutive material law

(“umat”) calibrated to the former one.

appropriate extension and modifications are introduced. Stress update and the consistent material Jaco-

bian, as well as an automatic time stepping scheme are handled.

All simulations employ four noded plane stress elements, using reduced integration for single element

tests and full integration for the structural simulations. The element thickness is 1 mm.

3.1. Isotropic Material — Single Element Tests

The ABAQUS on-board material is used to obtain reference solutions, the (generic) material data is given

in Table 1, which shows shear relaxation only, plotted in Fig. 1 (left) as “R33”. Single element simula-

tions are performed to compute the material parameters pertaining to the developed material model, and

which are the input to the UMAT. For this purpose the response to uni-axial strain loading is sought for.

A Heaviside step function is applied at t = 0 and kept constant afterwards as ε11(t > 0) = 1. The other

in-plane strain components are ε22 = 0 and γ12 = 0 at any time. The relaxation response, i.e. the time

dependent elements in the relaxation matrix, are shown in Fig. 1 by thin solid lines. Note that the re-

sponse which contains the Poisson effect, R12, is non-monotonous. The relaxation behavior is now fitted

by applying Prony series representations. These resulting material parameters for the UMAT are listed in

Table 2, the corresponding relaxation response is shown in Fig. 1.

3.2. Isotropic Material — Structural Simulations

A quadratic patch of unit length is discretized with 20×20 plane stress elements. The patch contains two

parallel rectangular “voids” with 0.2×0.6 mm, see Fig. 2. The boundary conditions are “unit cell” like (to

be used later for homogenization). The structure can be interpreted as porous material with orthotropic

properties. Its isotropic matrix is modeled by the ABAQUS on-board material, Table 1. The orthotropic
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Table 2. Isotropic linear viscoelastic material data as input to the UMAT; instantaneous elasticity matrix

elements, relaxation matrix elements by two Prony terms each.

R11 0 = 2666MPa R22 0 = 2666MPa R12 0 = R21 0 = 666MPa R33 0 = 1000MPa

r11 = 0.41 r22 = 0.41 r12 = r21 = 0.25 r33 = 0.25

τr11 = 1.25s τr22 = 1.25s τr12 = τr21 = 2.0s τr33 = 1.0s

r11 = 0 r22 = 0 r12 = r21 = −0.11 r33 = 0.25

τr11 = 1.25s τr22 = 1.25s τr12 = τr21 = 0.6s τr33 = 1.0s

1
2

Figure 2. Structure with voids, also representing a unit cell of an orthotropic material.

relaxation response of the structure is presented in Fig. 3 (denoted by “unit cell”). The off-diagonal

terms are equal, i.e. R12(t) = R21(t). The fitted material parameters are listed in Table 3. These material

parameters together with the developed UMAT are now employed to run single element tests. Comparison

to the original input is shown in Fig. 3. Excellent agreement can be seen for all elements, even for the

off-diagonal element R12(t).

3.3. Thermo-Viscoelastic Orthotropic Composite

In this section an example is presented to study the thermal expansion relaxation. To this end the geo-

metrical model of the structure from the previous examples is used, but the regions of the voids are now

filled with quasi-rigid material. The isotropic coefficient of thermal expansion is set to 1× 10−6/◦C. This

way, some model composite is obtained. For the matrix material the data from Table 1 is used. As in

the previous examples, the unit cell is employed to perform material characterization, i.e. to compute

the effective linear viscoelastic properties of the composite. The calibrated homogenized material data is

listed in Table 4, graphical presentation is omitted.

In addition, the effective thermal expansion behavior of the composite can be predicted by the unit cell

simulations. A Heaviside temperature step, ϑ(t > 0) = 1, from an undeformed, stress free configuration

is applied and the thermal expansion response is evaluated. Since the constituents’ stresses and strains

show relaxation and creep, the effective thermal expansion shows “relaxation/creep”, too. The corre-

sponding unit cell predictions are presented in Fig. 4 (thin lines). To obtain input data to the UEXPAN

Table 3. Orthotropic linear viscoelastic material data as input to the UMAT; instantaneous elasticity matrix

elements and relaxation matrix elements by one Prony term each.

R11 0 = 1693MPa R22 0 = 1124MPa R12 0 = R21 0 = 227MPa R33 0 = 242MPa

r11 = 0.440 r22 = 0.439 r12 = r21 = 0.234 r33 = 0.453

τr11 = 1.09s τr22 = 1.09s τr12 = τr21 = 1.98s τr33 = 1.08s
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Figure 3. Orthotropic relaxation functions Ri j(t) as response to Heaviside step strains; Homogenization

of a voided structure (“unit cell”), and single element predictions by the developed constitutive material

law (“umat”) calibrated to the homogenized behavior.

Table 4. Orthotropic linear thermo–viscoelastic material data of a rigid inclusion reinforced model

composite as input to the UMAT and the UEXPAN; instantaneous elasticity matrix elements, relaxation

matrix elements, instantaneous coefficients of thermal expansion, and thermal expansion relaxation data.

R11 0 = 5301MPa R22 0 = 3857MPa R12 0 = R21 0 = 817MPa R33 0 = 714MPa

r11 = 0.419 r22 = 0.413 r12 = r21 = 0.203 r33 = 0.434

τr11 = 1.20s τr22 = 1.20s τr12 = τr21 = 2.00s τr33 = 1.00s

r11 = 0.000 r22 = 0.000 r12 = r21 = −0.034 r33 = 0.000

τr11 = 1.20s τr22 = 1.20s τr12 = τr21 = 0.35s τr33 = 1.00s

α1 0 = 5.16 × 10−5/◦C α2 0 = 7.58 × 10−5/◦C

a1 = −0.019 a2 = −0.045

τa1 = 1.00s τa2 = 1.30s

subroutine, the thermal expansion response is fitted and the material data is listed in Table 4. The fitted

behavior is presented in Fig. 4 (thick dashed lines).

4. Summary

A constitutive material law for linear thermo–viscoelasticity in the time domain with orthotropic ma-

terial symmetry under plane stress assumption is developed and implemented into FEM. For the linear

viscoelastic material behavior the orthotropic material symmetry is not only considered for the elastic

part. Also for the relaxation response, full orthotropy is realized with the appropriate number of indepen-

dent material parameters. The formulation is based on a time dependent elasticity tensor for which each

element possesses its own relaxation function. This way, the mutual coupling of the normal components,

i.e. a Poisson type effect, is accounted for. The relaxation function for each tensor element is prescribed

by its individual Prony series expansions.

The thermal expansion relaxation is treated in analogy to the mechanical, i.e. viscoelastic, model. The

material behavior is described by instantaneous coefficients of thermal expansion and their individual re-

laxation functions. The time dependent thermal strain is modeled as function of the applied temperature

change. Various tests on isotropic and orthotropic problems are carried out for verification successfully.
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Figure 4. Orthotropic thermal expansion relaxation/creep functions αi(t) as response to unity tempera-

ture Heaviside step; homogenization of a rigid inclusion reinforced model composite (“unit cell”), and

single element predictions by the developed thermal expansion law (“uexpan”) calibrated to the homog-

enized behavior.
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