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Abstract 

Despite the development of many important concepts, the prediction of failure modes and strength of 

composite materials is still a challenge within the framework of the finite element method.  This study 

presents a peridynamic modeling of laminated composites with arbitrary fiber orientation and stacking 

sequence in order to predict damage initiation and its growth under cyclic loading. Its capability is 

demonstrated by considering a unidirectional laminate with an edge crack under cyclic loading. 

 

 

1. Introduction 

 

It is a very challenging task to predict all possible failure modes (matrix cracking, fiber breakage, 

delamination) in composites because damage initiation and its progressive growth are very complex, 

and commonly accepted methods have had limited success. Aside from the complex loading 

conditions, the deformation of a laminate is dependent on the lamina properties, thickness, and 

stacking sequence. 

 

Existing analysis methods face difficulties when predicting all possible failure modes in composites 

under multi-axial loading conditions and multiple-load paths.  Silling [1, 2] introduced a nonlocal 

theory that does not require spatial derivatives, the peridynamic (PD) theory. This theory allows for 

damage in the material response. It is formulated by using integral equations, and this feature allows 

damage initiation and propagation at multiple sites, with arbitrary damage paths inside the material. 

Damage is inherently calculated without special procedures, making progressive failure analysis more 

practical. 

 

In peridynamics, the internal forces are expressed through nonlocal interactions between the material 

points within a continuous body, and damage is part of the constitutive model.  It effectively predicts 

complex failure modes in composites under general loading conditions.  This study presents a PD 

approach for modeling composites with arbitrary fiber orientation and stacking sequence under cyclic 

loading.  Its capability is demonstrated by considering a laminate with a pre-existing crack under 

cyclic loading. 

 

2. Peridynamic laminate model 

 

The PD theory [1, 2]
 
concerns the physics of a material point that interacts with other material points 

within a certain range.  The position of a material point in undeformed and deformed configurations 
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are denoted as x  and y , respectively. The interaction domain H
x
 of material point x  is defined by 

its horizon,  .  Material points x , located within the domain H
x
 are called the family members of x.  

At any instant of time t, equilibrium between the acceleration term, internal force and external force 

must exist at each material point of a continuum given by 

 

     ', ' ', ,
H

t t dV t  
x

x
u x f u,u ,x,x b x  (1) 

 

where   is the density of material, and u , and u  are displacements of material points x  and x , 

respectively. The volume of material point x  is denoted by V x
, and b  is the force density vector.  

The pairwise force density vector, f  arises from the interaction between material points x  and x , 

and it is in opposite directions with equal magnitudes. 

 

The present PD laminate model considers the interaction of material points within each ply as well as 

their interaction with other material points in the adjacent plies.  The interactions are achieved through 

in-plane bonds and interlayer bonds as depicted in Fig. 1.   

 

 
Figure 1. PD horizon for a material point x within a laminate 

 

These bonds describe the nature of the deformation; thus, they can be associated with normal and 

shear deformations.  Therefore, there exist four types of bonds: in-plane normal and shear bonds, and 

interlayer (transverse) normal and shear bonds.  The in-plane normal and shear bonds are not the same 

as fiber and matrix bonds introduced in the previous PD composite models [3-7].  The kinematics and 

force density relations are described in detail by Hu and Madenci [8] without any constraints on the 

engineering material constants. 

 

3. Damage prediction 

 

When the stretch between two material points exceeds a critical value, the interaction is permanently 

removed, and the interaction forces vanish through a status (Heaviside step) function, ( , , )t x x .  The 

material point x has in-plane interactions within the same ply, as well as interlayer interactions 

between the adjacent plies above and below.  The local damage at a material point x is defined as the 

ratio of the number of the broken interactions to the total number of interactions within the horizon Hx, 

given by  

 

 
( , , )

, 1 H

H

t dV
t

dV




 
 






x

x

x x
x  (2) 
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The local damage ranges from zero to one.  When the local damage is one, all the interactions initially 

associated with the point have been eliminated, while a local damage of zero means that all 

interactions are intact.  The measure of local damage is an indicator of crack formation within a body.  

The details of the failure criteria and local damage are given by Hu et al. [9]. 

 

The number of cycles to crack initiation DN  can be obtained from the experimental crack initiation 

data which can be expressed in the form of a power law as 

 

2
2

1
1

1

1 m
m

DN G
m

 
  
 

 (3) 

 

where G  is the energy release rate at the crack tip, and the parameters 
1 0.2023m  and 

2 0.078924m    are obtained from the published data [10, 11].  Matrix cracking may occur due to 

opening mode (mode I) or shearing mode (mode II) when the energy release rate reaches its critical 

value.  Therefore, the PD energy release rate for these deformation states between material points ( )ix  

and ( )jx  is calculated as 

 

 ( )( ) ( ) ( ) ( )( )( )( ) y i j i j i ji j

I

f V V dv
G

h y





  and  

 ( )( ) ( ) ( ) ( )( )( )( ) x i j i j i ji j

II

f V V du
G

h x





 (4) 

 

where ( )( )x i jf  and ( )( )y i jf  are the force density components, and ( )( )i ju  and ( )( )i jv  are displacement 

components of the bond between these material points with incremental volumes, ( ) ( )i jV V .  The 

parameter x y    is the uniform spacing between these points, and h  is the thickness of a laminate.  

 

After the initiation stage, the crack grows in a stable manner according to the Paris-Erdogan law as 

 

nda
c G

dN
   (5) 

 

where /da dN  is the increase in crack length per cycle, and G  is the energy release rate at the peak 

loading during one cycle.  The factor c  and exponent n  are obtained from the experimental data [10, 

11], their values are 
62.44 10c    and 10.61n  . When the energy release rate G  at crack tip 

becomes lower than the threshold value thG  crack growth is terminated.   

 

Crack growth rate is assumed to be constant within one grid spacing x ; therefore, the number of 

cycles for stable crack growth is expressed as 

 

k n

k

x
N

c G


 


 (6) 

 

Thus, the number of cycles during stable crack growth can be calculated in the form  

 

1

K

G k

k

N N


   (7) 
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where K  is the total number of increments, and crack length is obtained by adding the incremental 

lengths x  to the initial length 0a  as 

 

0a a K x    (8) 

 

Consequently, the total life TN  of a structure under fatigue loading is given by  

 

T D GN N N   (9) 

 

4. Numerical procedure 

 

Under a quasi-static loading condition, the inertial term on the left of Eq. (1) is zero. Therefore, the PD 

equilibrium equation can be expressed as 

 

  L u b 0  (10) 

 

where the internal force density is defined by an integral operator L(u). The tangent stiffness matrix is 

obtained as 

 

T





L
K

u
 (11) 

 

in which L(u) is the internal force density vector in terms of the displacement vector, u.  As part of the 

analysis, the incremental equilibrium equations can be expressed in a recursive form 

 
1 1

T

n n n   K u b  (12) 

 

where T T ( )n nK K u ,
1 1 ,n n n   u u u  

1 1n n n   b b b  and 0,1,2,......,n N . At each 

incremental step, the tangent stiffness matrix is obtained from previously known state u
n
, and it is used 

to solve for the next unknown state u
n+1

. The system of equations is solved by the Generalized 

Minimal Residual algorithm. 

 

5. Numerical results 

 

A square laminate is subjected to cyclic tensile loading applied at two corners as shown in Fig. 2.  The 

laminate has dimensions of 100 mmL W  and thickness 1 mmh  .  It is made of T300/1076 

unidirectional graphite/epoxy prepreg with elastic properties are specified as 139.4 GPaLE  , 

10.6 GPaTE  , 4.6 GPaLTG  , and 0.3LTv  , and its mode I critical energy release rate is 

20.1703 kJ/mIcG  .  The threshold value is specified as 
2

th 0.06 kJ/mG  [10, 11]. The loading is 

achieved by applying displacement constraints at the upper- and lower-left corners.  It is varied 

between maxv  and zero.  The maximum applied displacement maxv  is determined based the PD 

calculations for an initial crack length of 0  40 mma   while invoking the assumption of 

max 0.8I IcG G .  With this assumption, Eq. (3) yields the number of cycles for crack initiation as 

149DN  .  After discretizing the laminate with a computational grid of 200×200 with 0.1mmx  , 

the energy release rate at the crack tip is calculated for eleven different initial crack length values that 
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vary between 040mm 60mma  .  With these PD calculations, the energy release rate expression 

can be constructed as a function of initial crack length in the form  

 
-7 3 -5 2 -4

0 0 0 0(   ) 1.739 10 -3.533 10 -1.2386 10   0.1866G a a a a      (13) 

 

After substituting for the energy relase rate in Eq. (5), its integration yields the theoretical number of 

cycles NG for stable crack growth.  The resulting relation between crack length and number of cycles is 

shown in Fig. 3 as the theoretical benchmark (solid red curve). 

 

 

 
Figure 2. A square laminate with a pre-existing crack under cyclic loading at the corners. 

 

Also, PD analysis is performed under constant amplitude loading for specified initial crack length of 

0 40 mma   with varying discretizations of 100×100, 150×150 and 200×200.  Based on the 

computed values of energy release rate, G  at the crack tip, the number cycles, N  necessary to grow 

the crack by an amount of x  is computed by using Eq. (6).  Figure 8 shows the predicted relation 

between the crack length and the number of cycles; the prediction obtained with 200×200 

discretization has a very good agreement with theoretical benchmark.  When the energy release rate, 

G  at crack tip becomes lower than the threshold value thG , crack growth is terminated.  In all cases, 

crack propagation stops when number of cycles is about 10
7
; therefore, the numerical models with 

different grid spacing converges to the sam e prediction of total number of cycles.  Figure 9 presents 

the PD prediction of crack growth rate.  The numerical estimates of factor c  and exponent n  are 

determined based on the PD calculations.  The PD approach is able to recover the theoretical crack 

growth rate.  Figure 10 presents the crack propagation process from the PD analysis; deformations are 

exaggerated for a more clear visualization. The four images on top show the displacement field in the 

-y direction at different crack length. Discontinuities due to the existence of crack can be observed. 

The four image below are damage patterns when crack length reaches to 

40,  50,  60 and 70 mma  , respectively. 
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Figure 3. Peridynamic predictions of the relation between crack length and cycle number. 

 

 

 
Figure 4. Comparison of crack growth rate between theoretical value and PD predictions 
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Figure 5. Peridynamic simulation of crack propagation under cyclic loading.  

 

 

6. Conclusions 

 

This study presents a peridynamic (PD) modeling of laminates under cyclic loading. It relies on the 

experimental fatigue data for a lamina along with the critical energy release  rate.  The PD calculations 

recover the expected theoretical crack growth rate, and the material constants that appear in the 

expression for the crack growth rate. 
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